Download or read book Python Programming and Numerical Methods written by Qingkai Kong and published by Academic Press. This book was released on 2020-11-27 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online
Download or read book Numerical Methods in Engineering with Python 3 written by Jaan Kiusalaas and published by Cambridge University Press. This book was released on 2013-01-21 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language.
Download or read book Numerical Methods in Physics with Python written by Alex Gezerlis and published by Cambridge University Press. This book was released on 2023-07-31 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: A standalone text on computational physics combining idiomatic Python, foundational numerical methods, and physics applications.
Download or read book Programming for Computations Python written by Svein Linge and published by Springer. This book was released on 2016-07-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
Download or read book Introduction to Numerical Programming written by Titus A. Beu and published by CRC Press. This book was released on 2014-09-03 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Makes Numerical Programming More Accessible to a Wider Audience Bearing in mind the evolution of modern programming, most specifically emergent programming languages that reflect modern practice, Numerical Programming: A Practical Guide for Scientists and Engineers Using Python and C/C++ utilizes the author’s many years of practical research and teaching experience to offer a systematic approach to relevant programming concepts. Adopting a practical, broad appeal, this user-friendly book offers guidance to anyone interested in using numerical programming to solve science and engineering problems. Emphasizing methods generally used in physics and engineering—from elementary methods to complex algorithms—it gradually incorporates algorithmic elements with increasing complexity. Develop a Combination of Theoretical Knowledge, Efficient Analysis Skills, and Code Design Know-How The book encourages algorithmic thinking, which is essential to numerical analysis. Establishing the fundamental numerical methods, application numerical behavior and graphical output needed to foster algorithmic reasoning, coding dexterity, and a scientific programming style, it enables readers to successfully navigate relevant algorithms, understand coding design, and develop efficient programming skills. The book incorporates real code, and includes examples and problem sets to assist in hands-on learning. Begins with an overview on approximate numbers and programming in Python and C/C++, followed by discussion of basic sorting and indexing methods, as well as portable graphic functionality Contains methods for function evaluation, solving algebraic and transcendental equations, systems of linear algebraic equations, ordinary differential equations, and eigenvalue problems Addresses approximation of tabulated functions, regression, integration of one- and multi-dimensional functions by classical and Gaussian quadratures, Monte Carlo integration techniques, generation of random variables, discretization methods for ordinary and partial differential equations, and stability analysis This text introduces platform-independent numerical programming using Python and C/C++, and appeals to advanced undergraduate and graduate students in natural sciences and engineering, researchers involved in scientific computing, and engineers carrying out applicative calculations.
Download or read book An Introduction to MATLAB Programming and Numerical Methods for Engineers written by Timmy Siauw and published by Academic Press. This book was released on 2014-04-05 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no prior background in linear algebra or real analysis, An Introduction to MATLAB® Programming and Numerical Methods for Engineers enables you to develop good computational problem solving techniques through the use of numerical methods and the MATLAB® programming environment. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level allowing you to quickly apply results in practical settings. - Tips, warnings, and "try this" features within each chapter help the reader develop good programming practices - Chapter summaries, key terms, and functions and operators lists at the end of each chapter allow for quick access to important information - At least three different types of end of chapter exercises — thinking, writing, and coding — let you assess your understanding and practice what you've learned
Download or read book Numerical Python written by Robert Johansson and published by Apress. This book was released on 2018-12-24 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.
Download or read book Numerical Python written by Robert Johansson and published by Apress. This book was released on 2015-10-07 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical modules in Python and its Standard Library as well as popular open source numerical Python packages like NumPy, FiPy, matplotlib and more to numerically compute solutions and mathematically model applications in a number of areas like big data, cloud computing, financial engineering, business management and more. After reading and using this book, you'll get some takeaway case study examples of applications that can be found in areas like business management, big data/cloud computing, financial engineering (i.e., options trading investment alternatives), and even games. Up until very recently, Python was mostly regarded as just a web scripting language. Well, computational scientists and engineers have recently discovered the flexibility and power of Python to do more. Big data analytics and cloud computing programmers are seeing Python's immense use. Financial engineers are also now employing Python in their work. Python seems to be evolving as a language that can even rival C++, Fortran, and Pascal/Delphi for numerical and mathematical computations.
Download or read book A Primer on Scientific Programming with Python written by Hans Petter Langtangen and published by Springer. This book was released on 2016-07-28 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Download or read book Practical Numerical and Scientific Computing with MATLAB and Python written by Eihab B. M. Bashier and published by CRC Press. This book was released on 2020-03-18 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Numerical and Scientific Computing with MATLAB® and Python concentrates on the practical aspects of numerical analysis and linear and non-linear programming. It discusses the methods for solving different types of mathematical problems using MATLAB and Python. Although the book focuses on the approximation problem rather than on error analysis of mathematical problems, it provides practical ways to calculate errors. The book is divided into three parts, covering topics in numerical linear algebra, methods of interpolation, numerical differentiation and integration, solutions of differential equations, linear and non-linear programming problems, and optimal control problems. This book has the following advantages: It adopts the programming languages, MATLAB and Python, which are widely used among academics, scientists, and engineers, for ease of use and contain many libraries covering many scientific and engineering fields. It contains topics that are rarely found in other numerical analysis books, such as ill-conditioned linear systems and methods of regularization to stabilize their solutions, nonstandard finite differences methods for solutions of ordinary differential equations, and the computations of the optimal controls. It provides a practical explanation of how to apply these topics using MATLAB and Python. It discusses software libraries to solve mathematical problems, such as software Gekko, pulp, and pyomo. These libraries use Python for solutions to differential equations and static and dynamic optimization problems. Most programs in the book can be applied in versions prior to MATLAB 2017b and Python 3.7.4 without the need to modify these programs. This book is aimed at newcomers and middle-level students, as well as members of the scientific community who are interested in solving math problems using MATLAB or Python.
Download or read book Fundamentals of Numerical Computation written by Tobin A. Driscoll and published by SIAM. This book was released on 2017-12-21 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Numerical Computation?is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. The authors have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book. The book is intended for advanced undergraduates in math, applied math, engineering, or science disciplines, as well as for researchers and professionals looking for an introduction to a subject they missed or overlooked in their education.?
Download or read book Solving PDEs in Python written by Hans Petter Langtangen and published by Springer. This book was released on 2017-03-21 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.
Download or read book An Introduction to Python Programming for Scientists and Engineers written by Johnny Wei-Bing Lin and published by Cambridge University Press. This book was released on 2022-07-07 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: Textbook that uses examples and Jupyter notebooks from across the sciences and engineering to teach Python programming.
Download or read book Programming for Computations Python written by Svein Linge and published by Springer Nature. This book was released on 2019-10-30 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is published open access under a CC BY 4.0 license. This book presents computer programming as a key method for solving mathematical problems. This second edition of the well-received book has been extensively revised: All code is now written in Python version 3.6 (no longer version 2.7). In addition, the two first chapters of the previous edition have been extended and split up into five new chapters, thus expanding the introduction to programming from 50 to 150 pages. Throughout the book, the explanations provided are now more detailed, previous examples have been modified, and new sections, examples and exercises have been added. Also, a number of small errors have been corrected. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style employed is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows students to write simple programs for solving common mathematical problems with numerical methods in the context of engineering and science courses. The emphasis is on generic algorithms, clean program design, the use of functions, and automatic tests for verification.
Download or read book Applied Scientific Computing written by Peter R. Turner and published by Springer. This book was released on 2018-07-18 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.
Download or read book PETSc for Partial Differential Equations Numerical Solutions in C and Python written by Ed Bueler and published by SIAM. This book was released on 2020-10-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.
Download or read book Practical Numerical Computing Using Python written by Mahendra Verma and published by Independently Published. This book was released on 2021-11-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Review: "This excellent book of Prof. Verma is a single resource which a student can use to learn the fast-developing field of computational science. In addition to the description of Python language, it provides a broad overview of hardware, software, classic numerical methods, and everything in between. I recommend it strongly to all!" -- Prof. Prateek Sharma, IISc Bengaluru Key Features of the Book: Perfect book for introduction to practical numerical algorithms and programs for advanced undergraduate and beginning graduate students. Introduces Python programming language and its modules related to numerical computing Covers Numpy, Matplotlib, and Scipy modules in details. Illustrates how to make a variety of plots and animations. Detailed discussions on important numerical algorithms: Interpolation, Integration, Differentiation, ODE and PDE solvers, and Linear algebra solvers. Practical implementation of the algorithms in Python. Introduces Spectral and Finite-difference methods and applications to fluid mechanics and quantum mechanics. Includes chapters on Monte Carlo methods and applications to statistical physics, as well as on error analysis. A brief introduction to Computer hardware, complexity estimates, and nondimensionalization.