EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Python 3 Text Processing with NLTK 3 Cookbook

Download or read book Python 3 Text Processing with NLTK 3 Cookbook written by Jacob Perkins and published by Packt Publishing Ltd. This book was released on 2014-08-26 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you’ve learned the limits of regular expressions the hard way, or you’ve realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful.

Book Natural Language Processing with Python

Download or read book Natural Language Processing with Python written by Steven Bird and published by "O'Reilly Media, Inc.". This book was released on 2009-06-12 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Book Python Natural Language Processing Cookbook

Download or read book Python Natural Language Processing Cookbook written by Zhenya Antić and published by Packt Publishing Ltd. This book was released on 2021-03-19 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.

Book Natural Language Processing  Python and NLTK

Download or read book Natural Language Processing Python and NLTK written by Nitin Hardeniya and published by Packt Publishing Ltd. This book was released on 2016-11-22 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to build expert NLP and machine learning projects using NLTK and other Python libraries About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Work through NLP concepts with simple and easy-to-follow programming recipes Gain insights into the current and budding research topics of NLP Who This Book Is For If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good. Students of linguistics and semantic/sentiment analysis professionals will find it invaluable. What You Will Learn The scope of natural language complexity and how they are processed by machines Clean and wrangle text using tokenization and chunking to help you process data better Tokenize text into sentences and sentences into words Classify text and perform sentiment analysis Implement string matching algorithms and normalization techniques Understand and implement the concepts of information retrieval and text summarization Find out how to implement various NLP tasks in Python In Detail Natural Language Processing is a field of computational linguistics and artificial intelligence that deals with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. The number of human-computer interaction instances are increasing so it's becoming imperative that computers comprehend all major natural languages. The first NLTK Essentials module is an introduction on how to build systems around NLP, with a focus on how to create a customized tokenizer and parser from scratch. You will learn essential concepts of NLP, be given practical insight into open source tool and libraries available in Python, shown how to analyze social media sites, and be given tools to deal with large scale text. This module also provides a workaround using some of the amazing capabilities of Python libraries such as NLTK, scikit-learn, pandas, and NumPy. The second Python 3 Text Processing with NLTK 3 Cookbook module teaches you the essential techniques of text and language processing with simple, straightforward examples. This includes organizing text corpora, creating your own custom corpus, text classification with a focus on sentiment analysis, and distributed text processing methods. The third Mastering Natural Language Processing with Python module will help you become an expert and assist you in creating your own NLP projects using NLTK. You will be guided through model development with machine learning tools, shown how to create training data, and given insight into the best practices for designing and building NLP-based applications using Python. This Learning Path combines some of the best that Packt has to offer in one complete, curated package and is designed to help you quickly learn text processing with Python and NLTK. It includes content from the following Packt products: NTLK essentials by Nitin Hardeniya Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, and Iti Mathur Style and approach This comprehensive course creates a smooth learning path that teaches you how to get started with Natural Language Processing using Python and NLTK. You'll learn to create effective NLP and machine learning projects using Python and NLTK.

Book Applied Text Analysis with Python

Download or read book Applied Text Analysis with Python written by Benjamin Bengfort and published by "O'Reilly Media, Inc.". This book was released on 2018-06-11 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity

Book Python Web Scraping Cookbook

Download or read book Python Web Scraping Cookbook written by Michael Heydt and published by Packt Publishing Ltd. This book was released on 2018-02-09 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Untangle your web scraping complexities and access web data with ease using Python scripts Key Features Hands-on recipes for advancing your web scraping skills to expert level One-stop solution guide to address complex and challenging web scraping tasks using Python Understand web page structures and collect data from a website with ease Book Description Python Web Scraping Cookbook is a solution-focused book that will teach you techniques to develop high-performance Scrapers, and deal with cookies, hidden form fields, Ajax-based sites and proxies. You'll explore a number of real-world scenarios where every part of the development or product life cycle will be fully covered. You will not only develop the skills to design reliable, high-performing data flows, but also deploy your codebase to Amazon Web Services (AWS). If you are involved in software engineering, product development, or data mining or in building data-driven products, you will find this book useful as each recipe has a clear purpose and objective. Right from extracting data from websites to writing a sophisticated web crawler, the book's independent recipes will be extremely helpful while on the job. This book covers Python libraries, requests, and BeautifulSoup. You will learn about crawling, web spidering, working with AJAX websites, and paginated items. You will also understand to tackle problems such as 403 errors, working with proxy, scraping images, and LXML. By the end of this book, you will be able to scrape websites more efficiently and deploy and operate your scraper in the cloud. What you will learn Use a variety of tools to scrape any website and data, including Scrapy and Selenium Master expression languages, such as XPath and CSS, and regular expressions to extract web data Deal with scraping traps such as hidden form fields, throttling, pagination, and different status codes Build robust scraping pipelines with SQS and RabbitMQ Scrape assets like image media and learn what to do when Scraper fails to run Explore ETL techniques of building a customized crawler, parser, and convert structured and unstructured data from websites Deploy and run your scraper as a service in AWS Elastic Container Service Who this book is for This book is ideal for Python programmers, web administrators, security professionals, and anyone who wants to perform web analytics. Familiarity with Python and basic understanding of web scraping will be useful to make the best of this book.

Book Text Processing in Python

Download or read book Text Processing in Python written by David Mertz and published by Addison-Wesley Professional. This book was released on 2003 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: bull; Demonstrates how Python is the perfect language for text-processing functions. bull; Provides practical pointers and tips that emphasize efficient, flexible, and maintainable approaches to text-processing challenges. bull; Helps programmers develop solutions for dealing with the increasing amounts of data with which we are all inundated.

Book Python Natural Language Processing

Download or read book Python Natural Language Processing written by Jalaj Thanaki and published by Packt Publishing Ltd. This book was released on 2017-07-31 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.

Book Raspberry Pi 3 Cookbook for Python Programmers

Download or read book Raspberry Pi 3 Cookbook for Python Programmers written by Dr. Steven Lawrence Fernandes and published by Packt Publishing Ltd. This book was released on 2018-04-30 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: A recipe-based guide to programming your Raspberry Pi 3 using Python Key Features Leverage the power of Raspberry Pi 3 using Python programming Create 3D games, build neural network modules, and interface with your own circuits Packed with clear, step-by-step recipes to walk you through the capabilities of Raspberry Pi Book Description Raspberry Pi 3 Cookbook for Python Programmers – Third Edition begins by guiding you through setting up Raspberry Pi 3, performing tasks using Python 3.6, and introducing the first steps to interface with electronics. As you work through each chapter, you will build your skills and apply them as you progress. You will learn how to build text classifiers, predict sentiments in words, develop applications using the popular Tkinter library, and create games by controlling graphics on your screen. You will harness the power of a built in graphics processor using Pi3D to generate your own high-quality 3D graphics and environments. You will understand how to connect Raspberry Pi’s hardware pins directly to control electronics, from switching on LEDs and responding to push buttons to driving motors and servos. Get to grips with monitoring sensors to gather real-life data, using it to control other devices, and viewing the results over the internet. You will apply what you have learned by creating your own Pi-Rover or Pi-Hexipod robots. You will also learn about sentiment analysis, face recognition techniques, and building neural network modules for optical character recognition. Finally, you will learn to build movie recommendations system on Raspberry Pi 3. What you will learn Learn to set up and run Raspberry Pi 3 Build text classifiers and perform automation using Python Predict sentiments in words and create games and graphics Detect edges and contours in images Build human face detection and recognition system Use Python to drive hardware Sense and display real-world data Build a neural network module for optical character recognition Build movie recommendations system Who this book is for This book is for anyone who wants to master the skills of Python programming using Raspberry Pi 3. Prior knowledge of Python will be an added advantage.

Book Natural Language Processing with Python Cookbook

Download or read book Natural Language Processing with Python Cookbook written by Krishna Bhavsar and published by . This book was released on 2017-11-24 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the tricks and tips that will help you design Text Analytics solutionsAbout This Book* Independent recipes that will teach you how to efficiently perform Natural Language Processing in Python* Use dictionaries to create your own named entities using this easy-to-follow guide* Learn how to implement NLTK for various scenarios with the help of example-rich recipes to take you beyond basic Natural Language ProcessingWho This Book Is ForThis book is intended for data scientists, data analysts, and data science professionals who want to upgrade their existing skills to implement advanced text analytics using NLP. Some basic knowledge of Natural Language Processing is recommended.What You Will Learn* Explore corpus management using internal and external corpora* Learn WordNet usage and a couple of simple application assignments using WordNet* Operate on raw text* Learn to perform tokenization, stemming, lemmatization, and spelling corrections, stop words removals, and more* Understand regular expressions for pattern matching* Learn to use and write your own POS taggers and grammars* Learn to evaluate your own trained models* Explore Deep Learning techniques in NLP* Generate Text from Nietzsche's writing using LSTM* Utilize the BABI dataset and LSTM to model episodesIn DetailNatural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages; in particular, it's about programming computers to fruitfully process large natural language corpora.This book includes unique recipes that will teach you various aspects of performing Natural Language Processing with NLTK-the leading Python platform for the task. You will come across various recipes during the course, covering (among other topics) natural language understanding, Natural Language Processing, and syntactic analysis. You will learn how to understand language, plan sentences, and work around various ambiguities. You will learn how to efficiently use NLTK and implement text classification, identify parts of speech, tag words, and more. You will also learn how to analyze sentence structures and master lexical analysis, syntactic and semantic analysis, pragmatic analysis, and the application of deep learning techniques.By the end of this book, you will have all the knowledge you need to implement Natural Language Processing with Python.Style and ApproachThis book's rich collection of recipes will come in handy when you are working with Natural Language Processing with Python. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.

Book Natural Language Processing with Java and LingPipe Cookbook

Download or read book Natural Language Processing with Java and LingPipe Cookbook written by Breck Baldwin and published by Packt Publishing Ltd. This book was released on 2014-11-28 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for experienced Java developers with NLP needs, whether academics, industrialists, or hobbyists. A basic knowledge of NLP terminology will be beneficial.

Book Natural Language Processing with Transformers  Revised Edition

Download or read book Natural Language Processing with Transformers Revised Edition written by Lewis Tunstall and published by "O'Reilly Media, Inc.". This book was released on 2022-05-26 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments

Book Machine Learning with Python Cookbook

Download or read book Machine Learning with Python Cookbook written by Chris Albon and published by "O'Reilly Media, Inc.". This book was released on 2018-03-09 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models

Book Learning Data Mining with Python

Download or read book Learning Data Mining with Python written by Robert Layton and published by Packt Publishing Ltd. This book was released on 2015-07-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations.

Book Natural Language Processing

Download or read book Natural Language Processing written by Raymond S. T. Lee and published by Springer Nature. This book was released on 2023-12-16 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents an up-to-date and comprehensive overview of Natural Language Processing (NLP), from basic concepts to core algorithms and key applications. Further, it contains seven step-by-step NLP workshops (total length: 14 hours) offering hands-on practice with essential Python tools like NLTK, spaCy, TensorFlow Kera, Transformer and BERT. The objective of this book is to provide readers with a fundamental grasp of NLP and its core technologies, and to enable them to build their own NLP applications (e.g. Chatbot systems) using Python-based NLP tools. It is both a textbook and NLP tool-book intended for the following readers: undergraduate students from various disciplines who want to learn NLP; lecturers and tutors who want to teach courses or tutorials for undergraduate/graduate students on NLP and related AI topics; and readers with various backgrounds who want to learn NLP, and more importantly, to build workable NLP applications after completing its 14 hours of Python-based workshops.

Book Impact of AI on Advancing Women s Safety

Download or read book Impact of AI on Advancing Women s Safety written by Ponnusamy, Sivaram and published by IGI Global. This book was released on 2024-02-16 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Women encounter multifaceted threats, ranging from personal safety hazards to discrimination deeply embedded in societal structures. The existing landscape demands innovative strategies to ensure women can participate fully in society without fear or impediment. Traditional systems often fall short, necessitating a paradigm shift in our approach to women's safety. Impact of AI on Advancing Women's Safety emerges as a groundbreaking solution to address the pervasive challenges they face. From the shadows of harassment to systemic biases in justice systems, women navigate a complex landscape. This book delves into the pressing issues, unveiling a visionary approach that leverages artificial intelligence to create tangible, transformative solutions.

Book Natural Language Processing with Python Quick Start Guide

Download or read book Natural Language Processing with Python Quick Start Guide written by Nirant Kasliwal and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build and deploy intelligent applications for natural language processing with Python by using industry standard tools and recently popular methods in deep learning Key FeaturesA no-math, code-driven programmer’s guide to text processing and NLPGet state of the art results with modern tooling across linguistics, text vectors and machine learningFundamentals of NLP methods from spaCy, gensim, scikit-learn and PyTorchBook Description NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a workflow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges. What you will learnUnderstand classical linguistics in using English grammar for automatically generating questions and answers from a free text corpusWork with text embedding models for dense number representations of words, subwords and characters in the English language for exploring document clusteringDeep Learning in NLP using PyTorch with a code-driven introduction to PyTorchUsing an NLP project management Framework for estimating timelines and organizing your project into stagesHack and build a simple chatbot application in 30 minutesDeploy an NLP or machine learning application using Flask as RESTFUL APIsWho this book is for Programmers who wish to build systems that can interpret language. Exposure to Python programming is required. Familiarity with NLP or machine learning vocabulary will be helpful, but not mandatory.