EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Python 3 and Feature Engineering

Download or read book Python 3 and Feature Engineering written by Oswald Campesato and published by Stylus Publishing, LLC. This book was released on 2023-12-12 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed for data scientists, machine learning practitioners, and anyone with a foundational understanding of Python 3.x. In the evolving field of data science, the ability to manipulate and understand datasets is crucial. The book offers content for mastering these skills using Python 3. The book provides a fast-paced introduction to a wealth of feature engineering concepts, equipping readers with the knowledge needed to transform raw data into meaningful information. Inside, you’ll find a detailed exploration of various types of data, methodologies for outlier detection using Scikit-Learn, strategies for robust data cleaning, and the intricacies of data wrangling. The book further explores feature selection, detailing methods for handling imbalanced datasets, and gives a practical overview of feature engineering, including scaling and extraction techniques necessary for different machine learning algorithms. It concludes with a treatment of dimensionality reduction, where you’ll navigate through complex concepts like PCA and various reduction techniques, with an emphasis on the powerful Scikit-Learn framework. FEATURES Includes numerous practical examples and partial code blocks that illuminate the path from theory to application Explores everything from data cleaning to the subtleties of feature selection and extraction, covering a wide spectrum of feature engineering topics Offers an appendix on working with the “awk” command-line utility Features companion files available for downloading with source code, datasets, and figures

Book Python Feature Engineering Cookbook

Download or read book Python Feature Engineering Cookbook written by Soledad Galli and published by Packt Publishing Ltd. This book was released on 2020-01-22 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key FeaturesDiscover solutions for feature generation, feature extraction, and feature selectionUncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasetsImplement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy librariesBook Description Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems. What you will learnSimplify your feature engineering pipelines with powerful Python packagesGet to grips with imputing missing valuesEncode categorical variables with a wide set of techniquesExtract insights from text quickly and effortlesslyDevelop features from transactional data and time series dataDerive new features by combining existing variablesUnderstand how to transform, discretize, and scale your variablesCreate informative variables from date and timeWho this book is for This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.

Book Python Data Science Handbook

Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Book Feature Engineering for Machine Learning

Download or read book Feature Engineering for Machine Learning written by Alice Zheng and published by "O'Reilly Media, Inc.". This book was released on 2018-03-23 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering. Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples. You’ll examine: Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms Natural text techniques: bag-of-words, n-grams, and phrase detection Frequency-based filtering and feature scaling for eliminating uninformative features Encoding techniques of categorical variables, including feature hashing and bin-counting Model-based feature engineering with principal component analysis The concept of model stacking, using k-means as a featurization technique Image feature extraction with manual and deep-learning techniques

Book Feature Engineering Bookcamp

Download or read book Feature Engineering Bookcamp written by Sinan Ozdemir and published by Simon and Schuster. This book was released on 2022-10-18 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deliver huge improvements to your machine learning pipelines without spending hours fine-tuning parameters! This book’s practical case-studies reveal feature engineering techniques that upgrade your data wrangling—and your ML results. In Feature Engineering Bookcamp you will learn how to: Identify and implement feature transformations for your data Build powerful machine learning pipelines with unstructured data like text and images Quantify and minimize bias in machine learning pipelines at the data level Use feature stores to build real-time feature engineering pipelines Enhance existing machine learning pipelines by manipulating the input data Use state-of-the-art deep learning models to extract hidden patterns in data Feature Engineering Bookcamp guides you through a collection of projects that give you hands-on practice with core feature engineering techniques. You’ll work with feature engineering practices that speed up the time it takes to process data and deliver real improvements in your model’s performance. This instantly-useful book skips the abstract mathematical theory and minutely-detailed formulas; instead you’ll learn through interesting code-driven case studies, including tweet classification, COVID detection, recidivism prediction, stock price movement detection, and more. About the technology Get better output from machine learning pipelines by improving your training data! Use feature engineering, a machine learning technique for designing relevant input variables based on your existing data, to simplify training and enhance model performance. While fine-tuning hyperparameters or tweaking models may give you a minor performance bump, feature engineering delivers dramatic improvements by transforming your data pipeline. About the book Feature Engineering Bookcamp walks you through six hands-on projects where you’ll learn to upgrade your training data using feature engineering. Each chapter explores a new code-driven case study, taken from real-world industries like finance and healthcare. You’ll practice cleaning and transforming data, mitigating bias, and more. The book is full of performance-enhancing tips for all major ML subdomains—from natural language processing to time-series analysis. What's inside Identify and implement feature transformations Build machine learning pipelines with unstructured data Quantify and minimize bias in ML pipelines Use feature stores to build real-time feature engineering pipelines Enhance existing pipelines by manipulating input data About the reader For experienced machine learning engineers familiar with Python. About the author Sinan Ozdemir is the founder and CTO of Shiba, a former lecturer of Data Science at Johns Hopkins University, and the author of multiple textbooks on data science and machine learning. Table of Contents 1 Introduction to feature engineering 2 The basics of feature engineering 3 Healthcare: Diagnosing COVID-19 4 Bias and fairness: Modeling recidivism 5 Natural language processing: Classifying social media sentiment 6 Computer vision: Object recognition 7 Time series analysis: Day trading with machine learning 8 Feature stores 9 Putting it all together

Book Feature Engineering and Selection

Download or read book Feature Engineering and Selection written by Max Kuhn and published by CRC Press. This book was released on 2019-07-25 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Book Introduction to Machine Learning with Python

Download or read book Introduction to Machine Learning with Python written by Andreas C. Müller and published by "O'Reilly Media, Inc.". This book was released on 2016-09-26 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills

Book The Art of Feature Engineering

Download or read book The Art of Feature Engineering written by Pablo Duboue and published by Cambridge University Press. This book was released on 2020-06-25 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide for data scientists who want to improve the performance of any machine learning solution with feature engineering.

Book Machine Learning and Knowledge Discovery in Databases

Download or read book Machine Learning and Knowledge Discovery in Databases written by Peggy Cellier and published by Springer Nature. This book was released on 2020-03-27 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019. The chapter "Supervised Human-guided Data Exploration" is published open access under a Creative Commons Attribution 4.0 International license (CC BY).

Book Numerical Methods in Engineering with Python 3

Download or read book Numerical Methods in Engineering with Python 3 written by Jaan Kiusalaas and published by Cambridge University Press. This book was released on 2013-01-21 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language.

Book Feature Engineering Made Easy

Download or read book Feature Engineering Made Easy written by Sinan Ozdemir and published by Packt Publishing Ltd. This book was released on 2018-01-22 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: A perfect guide to speed up the predicting power of machine learning algorithms Key Features Design, discover, and create dynamic, efficient features for your machine learning application Understand your data in-depth and derive astonishing data insights with the help of this Guide Grasp powerful feature-engineering techniques and build machine learning systems Book Description Feature engineering is the most important step in creating powerful machine learning systems. This book will take you through the entire feature-engineering journey to make your machine learning much more systematic and effective. You will start with understanding your data—often the success of your ML models depends on how you leverage different feature types, such as continuous, categorical, and more, You will learn when to include a feature, when to omit it, and why, all by understanding error analysis and the acceptability of your models. You will learn to convert a problem statement into useful new features. You will learn to deliver features driven by business needs as well as mathematical insights. You'll also learn how to use machine learning on your machines, automatically learning amazing features for your data. By the end of the book, you will become proficient in Feature Selection, Feature Learning, and Feature Optimization. What you will learn Identify and leverage different feature types Clean features in data to improve predictive power Understand why and how to perform feature selection, and model error analysis Leverage domain knowledge to construct new features Deliver features based on mathematical insights Use machine-learning algorithms to construct features Master feature engineering and optimization Harness feature engineering for real world applications through a structured case study Who this book is for If you are a data science professional or a machine learning engineer looking to strengthen your predictive analytics model, then this book is a perfect guide for you. Some basic understanding of the machine learning concepts and Python scripting would be enough to get started with this book.

Book Artificial Intelligence with Python

Download or read book Artificial Intelligence with Python written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2017-01-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.

Book Practical Machine Learning for Data Analysis Using Python

Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

Book Practical Machine Learning with Python

Download or read book Practical Machine Learning with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2017-12-20 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students

Book Practical Automated Machine Learning on Azure

Download or read book Practical Automated Machine Learning on Azure written by Deepak Mukunthu and published by "O'Reilly Media, Inc.". This book was released on 2019-09-23 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you’ll learn how to apply automated machine learning (AutoML), a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology. Building machine-learning models is an iterative and time-consuming process. Even those who know how to create ML models may be limited in how much they can explore. Once you complete this book, you’ll understand how to apply AutoML to your data right away. Learn how companies in different industries are benefiting from AutoML Get started with AutoML using Azure Explore aspects such as algorithm selection, auto featurization, and hyperparameter tuning Understand how data analysts, BI professions, developers can use AutoML in their familiar tools and experiences Learn how to get started using AutoML for use cases including classification, regression, and forecasting.

Book Feature Engineering for Machine Learning and Data Analytics

Download or read book Feature Engineering for Machine Learning and Data Analytics written by Guozhu Dong and published by CRC Press. This book was released on 2018-03-14 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Book Machine Learning with Python for Everyone

Download or read book Machine Learning with Python for Everyone written by Mark Fenner and published by Addison-Wesley Professional. This book was released on 2019-07-30 with total page 1376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complete Beginner’s Guide to Understanding and Building Machine Learning Systems with Python Machine Learning with Python for Everyone will help you master the processes, patterns, and strategies you need to build effective learning systems, even if you’re an absolute beginner. If you can write some Python code, this book is for you, no matter how little college-level math you know. Principal instructor Mark E. Fenner relies on plain-English stories, pictures, and Python examples to communicate the ideas of machine learning. Mark begins by discussing machine learning and what it can do; introducing key mathematical and computational topics in an approachable manner; and walking you through the first steps in building, training, and evaluating learning systems. Step by step, you’ll fill out the components of a practical learning system, broaden your toolbox, and explore some of the field’s most sophisticated and exciting techniques. Whether you’re a student, analyst, scientist, or hobbyist, this guide’s insights will be applicable to every learning system you ever build or use. Understand machine learning algorithms, models, and core machine learning concepts Classify examples with classifiers, and quantify examples with regressors Realistically assess performance of machine learning systems Use feature engineering to smooth rough data into useful forms Chain multiple components into one system and tune its performance Apply machine learning techniques to images and text Connect the core concepts to neural networks and graphical models Leverage the Python scikit-learn library and other powerful tools Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.