EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advances in Information and Communication

Download or read book Advances in Information and Communication written by Kohei Arai and published by Springer Nature. This book was released on with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Practical Machine Learning for Computer Vision

Download or read book Practical Machine Learning for Computer Vision written by Valliappa Lakshmanan and published by "O'Reilly Media, Inc.". This book was released on 2021-07-21 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models

Book AI  Machine Learning and Deep Learning

Download or read book AI Machine Learning and Deep Learning written by Fei Hu and published by CRC Press. This book was released on 2023-06-05 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, Artificial Intelligence (AI) and Machine Learning/ Deep Learning (ML/DL) have become the hottest areas in information technology. In our society, many intelligent devices rely on AI/ML/DL algorithms/tools for smart operations. Although AI/ML/DL algorithms and tools have been used in many internet applications and electronic devices, they are also vulnerable to various attacks and threats. AI parameters may be distorted by the internal attacker; the DL input samples may be polluted by adversaries; the ML model may be misled by changing the classification boundary, among many other attacks and threats. Such attacks can make AI products dangerous to use. While this discussion focuses on security issues in AI/ML/DL-based systems (i.e., securing the intelligent systems themselves), AI/ML/DL models and algorithms can actually also be used for cyber security (i.e., the use of AI to achieve security). Since AI/ML/DL security is a newly emergent field, many researchers and industry professionals cannot yet obtain a detailed, comprehensive understanding of this area. This book aims to provide a complete picture of the challenges and solutions to related security issues in various applications. It explains how different attacks can occur in advanced AI tools and the challenges of overcoming those attacks. Then, the book describes many sets of promising solutions to achieve AI security and privacy. The features of this book have seven aspects: This is the first book to explain various practical attacks and countermeasures to AI systems Both quantitative math models and practical security implementations are provided It covers both "securing the AI system itself" and "using AI to achieve security" It covers all the advanced AI attacks and threats with detailed attack models It provides multiple solution spaces to the security and privacy issues in AI tools The differences among ML and DL security and privacy issues are explained Many practical security applications are covered

Book Effective Machine Learning Teams

Download or read book Effective Machine Learning Teams written by David Tan and published by "O'Reilly Media, Inc.". This book was released on 2024-02-29 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain the valuable skills and techniques you need to accelerate the delivery of machine learning solutions. With this practical guide, data scientists, ML engineers, and their leaders will learn how to bridge the gap between data science and Lean product delivery in a practical and simple way. David Tan, Ada Leung, and Dave Colls show you how to apply time-tested software engineering skills and Lean product delivery practices to reduce toil and waste, shorten feedback loops, and improve your team's flow when building ML systems and products. Based on the authors' experience across multiple real-world data and ML projects, the proven techniques in this book will help your team avoid common traps in the ML world, so you can iterate and scale more quickly and reliably. You'll learn how to overcome friction and experience flow when delivering ML solutions. You'll also learn how to: Write automated tests for ML systems, containerize development environments, and refactor problematic codebases Apply MLOps and CI/CD practices to accelerate experimentation cycles and improve reliability of ML solutions Apply Lean delivery and product practices to improve your odds of building the right product for your users Identify suitable team structures and intra- and inter-team collaboration techniques to enable fast flow, reduce cognitive load, and scale ML within your organization

Book Bayesian Methods for Hackers

Download or read book Bayesian Methods for Hackers written by Cameron Davidson-Pilon and published by Addison-Wesley Professional. This book was released on 2015-09-30 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Book Machine Learning for Algorithmic Trading

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Book Collaborative Efforts for Understanding the Human Brain

Download or read book Collaborative Efforts for Understanding the Human Brain written by Sook-Lei Liew and published by Frontiers Media SA. This book was released on 2019-10-10 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The human brain is incredibly complex, and the more we learn about it, the more we realize how much we need a truly interdisciplinary team to make sense of its intricacies. This eBook presents the latest efforts in collaborative team science from around the world, all aimed at understanding the human brain.

Book TinyML

    Book Details:
  • Author : Pete Warden
  • Publisher : O'Reilly Media
  • Release : 2019-12-16
  • ISBN : 1492052019
  • Pages : 504 pages

Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Book Management  Tourism and Smart Technologies

Download or read book Management Tourism and Smart Technologies written by Carlos Montenegro and published by Springer Nature. This book was released on 2024-01-03 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advances in the research of various entities in the world, which are working on the application of technology or management in tourism. Indeed, one of the sectors hardest hit by the pandemic was tourism, likewise one of the post-pandemic effects is the rapid recovery of the sector, but more importantly is the great innovation that has occurred in marketing strategies for tourism using technology and applying management strategies not only to be more profitable but to have the best customer satisfaction. The book is aimed at the general public that seeks to innovate, learn from lessons learned and establish a knowledge base in mechanisms that apply technology or management in tourism, with the aim of improving the experience of all those involved in the business chain. This compendium aims to share all those great experiences and researches in the areas of: Managements, Tourism, Marketing strategies in Management, Tourism and Technology, Technology, Applied Computer Science, Artificial Intelligence, Business Administration, Cloud Computing, Educational Management, Finance, Insurance and Services Management, Health Tourism, Human Resource Management, Information Systems Planning and Management, Information Technologies in Tourism, Internet Technology, Knowledge Management, Management of Supply Chain and Logistics, Marketing Innovation, Robotics, Strategic Management Innovation, Sustainability Management, Technical Economy Management, Technical Innovation and Management, Technology in Tourism and Tourist Experience, Tourism Industry and Ecology, Tourism Management, a total of 77 research projects and many spaces and relationships between researchers to collaborate in the advancement of science are presented.

Book Bulletin of the Atomic Scientists

Download or read book Bulletin of the Atomic Scientists written by and published by . This book was released on 1961-05 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.

Book Learning Azure DevOps

Download or read book Learning Azure DevOps written by Myra Kelnor and published by GitforGits. This book was released on 2024-08-04 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: To help cloud professionals make the most of the Azure DevOps platform, "Learning Azure DevOps" is a practical book that walks them through the process step-by-step. This book goes over all the bases of DevOps, including how to automate crucial tasks, deploy infrastructure as code (IaC), and set up and manage CI/CD pipelines. At the outset, the chapters will teach readers how to create Azure DevOps projects and link their repositories to VCSes like GitHub. Any application's build, test, and deployment processes, including Spring Boot's, can be automated with Azure Pipelines by configuring Pipeline as Code using YAML. To make sure that professionals can manage scalable, cloud-native apps, we also cover advanced topics like containerizing apps with Docker and deploying them to Azure Kubernetes Service (AKS). Using frameworks such as JUnit, Mockito, and Postman, the book goes even further into automated testing to guarantee quality assurance and continuous testing. It teaches to automate backup and disaster recovery procedures for resilient operations and to use Flyway to perform schema migrations. Additionally, teams are guided to work efficiently together through Azure Boards, shared pipelines, and centralized infrastructure management, highlighting collaboration. Also covered is Azure DevOps Analytics, which readers can use to keep tabs on their projects and teams' performance using real-time dashboards. Key Learnings Integrate with Git for version control and set up Azure DevOps projects. Develop YAML-based Pipeline as Code to streamline the process of automating builds, tests, and deployments. Dockerize your apps and then launch them on AKS. Utilize Azure Boards and Project Boards to manage and monitor work items, tasks, and user stories. Add Postman, JUnit, and Mockito to your continuous integration pipelines to automate your application testing. Integrate Flyway into your Azure Pipelines to automate database schema migrations and achieve continuous delivery. Facilitate cross-team and cross-project cooperation by establishing shared pipelines and resources. Use Azure DevOps Analytics and performance insights for project management and monitoring. Deploy backups and failover procedures automatically in Azure DevOps. Use Terraform in conjunction with Azure Pipelines to deploy cloud-based IaC. Table of Content Getting Started with Azure DevOps Pipeline as Code with YAML Continuous Integration with Azure Pipelines Continuous Delivery with Azure Pipelines Managing Dependencies with Azure Artifacts Testing and Quality Assurance with Azure Test Plans Infrastructure Automation with Azure Pipelines Collaboration and Team Management in Azure DevOps

Book Machine Learning

Download or read book Machine Learning written by and published by . This book was released on 2017 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Science and Machine Learning

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Book Targeted Learning

    Book Details:
  • Author : Mark J. van der Laan
  • Publisher : Springer Science & Business Media
  • Release : 2011-06-17
  • ISBN : 1441997822
  • Pages : 628 pages

Download or read book Targeted Learning written by Mark J. van der Laan and published by Springer Science & Business Media. This book was released on 2011-06-17 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.

Book Deep Learning and the Game of Go

Download or read book Deep Learning and the Game of Go written by Kevin Ferguson and published by Simon and Schuster. This book was released on 2019-01-06 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning

Book The Nature of Code

    Book Details:
  • Author : Daniel Shiffman
  • Publisher : No Starch Press
  • Release : 2024-09-03
  • ISBN : 1718503717
  • Pages : 642 pages

Download or read book The Nature of Code written by Daniel Shiffman and published by No Starch Press. This book was released on 2024-09-03 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.

Book The Economics of Artificial Intelligence

Download or read book The Economics of Artificial Intelligence written by Ajay Agrawal and published by University of Chicago Press. This book was released on 2024-03-05 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.