Download or read book New Trends in Databases and Information Systems written by András Benczúr and published by Springer. This book was released on 2018-08-30 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed short papers, workshops and doctoral consortium papers of the 22th European Conference on Advances in Databases and Information Systems, ADBIS 2018, held in Budapest, Hungary, in September 2018. The 20 full and the 4 short workshop papers as well as the 3 doctoral consortium papers were carefully reviewed and selected from 54 submissions to the workshops and 6 submissions to the doctoral consortium. Furthermore, there are 10 short papers included, which were accepted for the main conference. The papers are organized according to the 6 workshops and the doctoral consortium: ADBIS 2018 short papers; First Workshop on Advances on Big Data Management, Analytics, Data Privacy and Security, BigDataMAPS 2018; First International Workshop on New Frontiers on Meta-data Management and Usage, M2U 2018; First Citizen Science Applications and Citizen Databases Workshop, CSADB 2018; First International Workshop on Articial Intelligence for Question Answering, AI*QA 2018; First International Workshop on BIG Data Storage, Processing and Mining for Personalized MEDicine, BIGPMED 2018; First Workshop on Current Trends in Contemporary Information Systems and Their Architectures, ISTREND 2018; Doctoral Consortium.
Download or read book Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond written by Foto Afrati and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Transactions on Large Scale Data and Knowledge Centered Systems XLIV written by Abdelkader Hameurlain and published by Springer Nature. This book was released on 2020-09-09 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing (e.g., computing resources, services, metadata, data sources) across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. This, the 44th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains six fully revised and extended papers selected from the 35th conference on Data Management – Principles, Technologies and Applications, BDA 2019. The topics covered include big data, graph data streams, workflow execution in the cloud, privacy in crowdsourcing, secure distributed computing, machine learning, and data mining for recommendation systems.
Download or read book Data Intensive Text Processing with MapReduce written by Jimmy Lin and published by Springer Nature. This book was released on 2022-05-31 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks
Download or read book Introduction to Algorithms third edition written by Thomas H. Cormen and published by MIT Press. This book was released on 2009-07-31 with total page 1313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.
Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Download or read book Computational Geometry written by Franco P. Preparata and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Download or read book Readings in Database Systems written by Joseph M. Hellerstein and published by MIT Press. This book was released on 2005 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest edition of a popular text and reference on database research, with substantial new material and revision; covers classical literature and recent hot topics. Lessons from database research have been applied in academic fields ranging from bioinformatics to next-generation Internet architecture and in industrial uses including Web-based e-commerce and search engines. The core ideas in the field have become increasingly influential. This text provides both students and professionals with a grounding in database research and a technical context for understanding recent innovations in the field. The readings included treat the most important issues in the database area--the basic material for any DBMS professional. This fourth edition has been substantially updated and revised, with 21 of the 48 papers new to the edition, four of them published for the first time. Many of the sections have been newly organized, and each section includes a new or substantially revised introduction that discusses the context, motivation, and controversies in a particular area, placing it in the broader perspective of database research. Two introductory articles, never before published, provide an organized, current introduction to basic knowledge of the field; one discusses the history of data models and query languages and the other offers an architectural overview of a database system. The remaining articles range from the classical literature on database research to treatments of current hot topics, including a paper on search engine architecture and a paper on application servers, both written expressly for this edition. The result is a collection of papers that are seminal and also accessible to a reader who has a basic familiarity with database systems.
Download or read book Knowledge Graphs written by Aidan Hogan and published by Morgan & Claypool Publishers. This book was released on 2021-11-08 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.
Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Download or read book Genetic Algorithms in Search Optimization and Machine Learning written by David Edward Goldberg and published by Addison-Wesley Professional. This book was released on 1989 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.
Download or read book Operating Systems written by Thomas Anderson and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past two decades, there has been a huge amount of innovation in both the principles and practice of operating systems Over the same period, the core ideas in a modern operating system - protection, concurrency, virtualization, resource allocation, and reliable storage - have become widely applied throughout computer science. Whether you get a job at Facebook, Google, Microsoft, or any other leading-edge technology company, it is impossible to build resilient, secure, and flexible computer systems without the ability to apply operating systems concepts in a variety of settings. This book examines the both the principles and practice of modern operating systems, taking important, high-level concepts all the way down to the level of working code. Because operating systems concepts are among the most difficult in computer science, this top to bottom approach is the only way to really understand and master this important material.
Download or read book An Architecture for Fast and General Data Processing on Large Clusters written by Matei Zaharia and published by Morgan & Claypool. This book was released on 2016-05-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past few years have seen a major change in computing systems, as growing data volumes and stalling processor speeds require more and more applications to scale out to clusters. Today, a myriad data sources, from the Internet to business operations to scientific instruments, produce large and valuable data streams. However, the processing capabilities of single machines have not kept up with the size of data. As a result, organizations increasingly need to scale out their computations over clusters. At the same time, the speed and sophistication required of data processing have grown. In addition to simple queries, complex algorithms like machine learning and graph analysis are becoming common. And in addition to batch processing, streaming analysis of real-time data is required to let organizations take timely action. Future computing platforms will need to not only scale out traditional workloads, but support these new applications too. This book, a revised version of the 2014 ACM Dissertation Award winning dissertation, proposes an architecture for cluster computing systems that can tackle emerging data processing workloads at scale. Whereas early cluster computing systems, like MapReduce, handled batch processing, our architecture also enables streaming and interactive queries, while keeping MapReduce's scalability and fault tolerance. And whereas most deployed systems only support simple one-pass computations (e.g., SQL queries), ours also extends to the multi-pass algorithms required for complex analytics like machine learning. Finally, unlike the specialized systems proposed for some of these workloads, our architecture allows these computations to be combined, enabling rich new applications that intermix, for example, streaming and batch processing. We achieve these results through a simple extension to MapReduce that adds primitives for data sharing, called Resilient Distributed Datasets (RDDs). We show that this is enough to capture a wide range of workloads. We implement RDDs in the open source Spark system, which we evaluate using synthetic and real workloads. Spark matches or exceeds the performance of specialized systems in many domains, while offering stronger fault tolerance properties and allowing these workloads to be combined. Finally, we examine the generality of RDDs from both a theoretical modeling perspective and a systems perspective. This version of the dissertation makes corrections throughout the text and adds a new section on the evolution of Apache Spark in industry since 2014. In addition, editing, formatting, and links for the references have been added.
Download or read book Big Data written by Min Chen and published by Springer. This book was released on 2014-05-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer Brief provides a comprehensive overview of the background and recent developments of big data. The value chain of big data is divided into four phases: data generation, data acquisition, data storage and data analysis. For each phase, the book introduces the general background, discusses technical challenges and reviews the latest advances. Technologies under discussion include cloud computing, Internet of Things, data centers, Hadoop and more. The authors also explore several representative applications of big data such as enterprise management, online social networks, healthcare and medical applications, collective intelligence and smart grids. This book concludes with a thoughtful discussion of possible research directions and development trends in the field. Big Data: Related Technologies, Challenges and Future Prospects is a concise yet thorough examination of this exciting area. It is designed for researchers and professionals interested in big data or related research. Advanced-level students in computer science and electrical engineering will also find this book useful.
Download or read book The Era of Big Spatial Data written by Ahmed Eldawy and published by . This book was released on 2016-12-28 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summarizes the state-of-the-art in this area. It classifies the existing work by considering six aspects of big spatial data systems: approach, architecture, language, indexing, querying, and visualization. It also provides the reader with case studies of real applications that make use of these systems to provide services for end users.
Download or read book Building the Hyperconnected Society written by Ovidiu Vermesan and published by River Publishers. This book was released on 2015-06-16 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade.
Download or read book Linked Data written by Sherif Sakr and published by Springer. This book was released on 2018-03-01 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes efficient and effective techniques for harnessing the power of Linked Data by tackling the various aspects of managing its growing volume: storing, querying, reasoning, provenance management and benchmarking. To this end, Chapter 1 introduces the main concepts of the Semantic Web and Linked Data and provides a roadmap for the book. Next, Chapter 2 briefly presents the basic concepts underpinning Linked Data technologies that are discussed in the book. Chapter 3 then offers an overview of various techniques and systems for centrally querying RDF datasets, and Chapter 4 outlines various techniques and systems for efficiently querying large RDF datasets in distributed environments. Subsequently, Chapter 5 explores how streaming requirements are addressed in current, state-of-the-art RDF stream data processing. Chapter 6 covers performance and scaling issues of distributed RDF reasoning systems, while Chapter 7 details benchmarks for RDF query engines and instance matching systems. Chapter 8 addresses the provenance management for Linked Data and presents the different provenance models developed. Lastly, Chapter 9 offers a brief summary, highlighting and providing insights into some of the open challenges and research directions. Providing an updated overview of methods, technologies and systems related to Linked Data this book is mainly intended for students and researchers who are interested in the Linked Data domain. It enables students to gain an understanding of the foundations and underpinning technologies and standards for Linked Data, while researchers benefit from the in-depth coverage of the emerging and ongoing advances in Linked Data storing, querying, reasoning, and provenance management systems. Further, it serves as a starting point to tackle the next research challenges in the domain of Linked Data management.