Download or read book Problems in Probability Theory Mathematical Statistics and Theory of Random Functions written by A. A. Sveshnikov and published by Courier Corporation. This book was released on 2012-04-30 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
Download or read book Theoretical Statistics written by D.R. Cox and published by CRC Press. This book was released on 1979-09-06 with total page 1060 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text that stresses the general concepts of the theory of statistics Theoretical Statistics provides a systematic statement of the theory of statistics, emphasizing general concepts rather than mathematical rigor. Chapters 1 through 3 provide an overview of statistics and discuss some of the basic philosophical ideas and problems behind statistical procedures. Chapters 4 and 5 cover hypothesis testing with simple and null hypotheses, respectively. Subsequent chapters discuss non-parametrics, interval estimation, point estimation, asymptotics, Bayesian procedure, and deviation theory. Student familiarity with standard statistical techniques is assumed.
Download or read book Theoretical Statistics written by Robert W. Keener and published by Springer Science & Business Media. This book was released on 2010-09-08 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.
Download or read book Applied Statistics written by Dieter Rasch and published by John Wiley & Sons. This book was released on 2019-08-14 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instructs readers on how to use methods of statistics and experimental design with R software Applied statistics covers both the theory and the application of modern statistical and mathematical modelling techniques to applied problems in industry, public services, commerce, and research. It proceeds from a strong theoretical background, but it is practically oriented to develop one's ability to tackle new and non-standard problems confidently. Taking a practical approach to applied statistics, this user-friendly guide teaches readers how to use methods of statistics and experimental design without going deep into the theory. Applied Statistics: Theory and Problem Solutions with R includes chapters that cover R package sampling procedures, analysis of variance, point estimation, and more. It follows on the heels of Rasch and Schott's Mathematical Statistics via that book's theoretical background—taking the lessons learned from there to another level with this book’s addition of instructions on how to employ the methods using R. But there are two important chapters not mentioned in the theoretical back ground as Generalised Linear Models and Spatial Statistics. Offers a practical over theoretical approach to the subject of applied statistics Provides a pre-experimental as well as post-experimental approach to applied statistics Features classroom tested material Applicable to a wide range of people working in experimental design and all empirical sciences Includes 300 different procedures with R and examples with R-programs for the analysis and for determining minimal experimental sizes Applied Statistics: Theory and Problem Solutions with R will appeal to experimenters, statisticians, mathematicians, and all scientists using statistical procedures in the natural sciences, medicine, and psychology amongst others.
Download or read book PROBLEMS AND SOLUTIONS IN THEORETICAL STATISTICS written by David R. Cox and published by . This book was released on 1980 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Humongous Book of Statistics Problems written by Robert Donnelly and published by Penguin. This book was released on 2009-12-01 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to solve statistics problems—and make them no problem! Most math and science study guides are dry and difficult, but this is the exception. Following the successful The Humongous Books in calculus and algebra, bestselling author Mike Kelley takes a typical statistics workbook, full of solved problems, and writes notes in the margins, adding missing steps and simplifying concepts and solutions. By learning how to interpret and solve problems as they are presented in statistics courses, students prepare to solve those difficult problems that were never discussed in class but are always on exams. There are also annotated notes throughout the book to clarify each problem—all guided by an author with a great track record for helping students and math enthusiasts. His website (calculus-help.com) reaches thousands of students every month.
Download or read book Problems and Solutions in Theoretical Statistics written by David Roxbee Cox and published by . This book was released on 1978 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Download or read book Statistics for Mathematicians written by Victor M. Panaretos and published by Birkhäuser. This book was released on 2016-06-01 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students.
Download or read book Problems and Solutions in Theoretical Statistics written by David Roxbee Cox and published by . This book was released on 1986 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Problems in Data Science written by Li M. Chen and published by Springer. This book was released on 2015-12-15 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods. For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark. This book contains three parts. The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematical image and video processing, topological data analysis, and statistical methods. The final section provides case studies on special topics in variational learning, manifold learning, business and financial data rec overy, geometric search, and computing models. Mathematical Problems in Data Science is a valuable resource for researchers and professionals working in data science, information systems and networks. Advanced-level students studying computer science, electrical engineering and mathematics will also find the content helpful.
Download or read book Theory of Statistics written by Mark J. Schervish and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this graduate textbook is to provide a comprehensive advanced course in the theory of statistics covering those topics in estimation, testing, and large sample theory which a graduate student might typically need to learn as preparation for work on a Ph.D. An important strength of this book is that it provides a mathematically rigorous and even-handed account of both Classical and Bayesian inference in order to give readers a broad perspective. For example, the "uniformly most powerful" approach to testing is contrasted with available decision-theoretic approaches.
Download or read book Problems and Solutions in Theoretical Statistics written by David Cox and published by Springer. This book was released on 1978-08-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In our book Theoretical Statistics we gave about 150 Further results and exercises mostly intended to illustrate material of intrinsic interest that it was not possible to cover in the main text. In many cases the statements were based quite directly on recent papers. The present book gives outline solutions and discussion of these problems. To make the book selfcontained we have preceded each set of problems by a brief summary of the main general ideas required. The collection of these summaries provides a rapid review of the theory of statistics. The book contains a substantial amount of general material not previously available in book form. The detailed solution of special problems is a vital part of the study of any mathematical subject and we hope therefore that teachers and students of statistics especially at graduate level will find the problems and outline solutions helpful. In addition we hope that research workers in statistics interested in special problems will find the book an effective review of some useful theoretical ideas including the associated elementary mathematical techniques. While the numbering and arrangement of the problems is the same as in Theoretical Statistics, we have rewritten a number of the problems, partly in order to make them self contained and partly for clarification and correction.
Download or read book Introductory Statistics 2e written by Barbara Illowsky and published by . This book was released on 2023-12-13 with total page 2106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Download or read book Fundamentals of Mathematical Statistics written by S.C. Gupta and published by Sultan Chand & Sons. This book was released on 2020-09-10 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Download or read book How to Lie with Statistics written by Darrell Huff and published by W. W. Norton & Company. This book was released on 2010-12-07 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you want to outsmart a crook, learn his tricks—Darrell Huff explains exactly how in the classic How to Lie with Statistics. From distorted graphs and biased samples to misleading averages, there are countless statistical dodges that lend cover to anyone with an ax to grind or a product to sell. With abundant examples and illustrations, Darrell Huff’s lively and engaging primer clarifies the basic principles of statistics and explains how they’re used to present information in honest and not-so-honest ways. Now even more indispensable in our data-driven world than it was when first published, How to Lie with Statistics is the book that generations of readers have relied on to keep from being fooled.