EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Probability With a View Towards Statistics  Volume I

Download or read book Probability With a View Towards Statistics Volume I written by J. Hoffman-Jorgensen and published by Routledge. This book was released on 2017-11-22 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume I of this two-volume text and reference work begins by providing a foundation in measure and integration theory. It then offers a systematic introduction to probability theory, and in particular, those parts that are used in statistics. This volume discusses the law of large numbers for independent and non-independent random variables, transforms, special distributions, convergence in law, the central limit theorem for normal and infinitely divisible laws, conditional expectations and martingales. Unusual topics include the uniqueness and convergence theorem for general transforms with characteristic functions, Laplace transforms, moment transforms and generating functions as special examples. The text contains substantive applications, e.g., epidemic models, the ballot problem, stock market models and water reservoir models, and discussion of the historical background. The exercise sets contain a variety of problems ranging from simple exercises to extensions of the theory.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Probability and Statistics by Example

Download or read book Probability and Statistics by Example written by Yu. M. Suhov and published by Cambridge University Press. This book was released on 2014-09-22 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable resource for students and teachers alike, this second edition contains more than 200 worked examples and exam questions.

Book Probability with Statistical Applications

Download or read book Probability with Statistical Applications written by Rinaldo B. Schinazi and published by Springer Science & Business Media. This book was released on 2011-12-15 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition textbook offers a practical introduction to probability for undergraduates at all levels with different backgrounds and views towards applications. Calculus is a prerequisite for understanding the basic concepts, however the book is written with a sensitivity to students’ common difficulties with calculus that does not obscure the thorough treatment of the probability content. The first six chapters of this text neatly and concisely cover the material traditionally required by most undergraduate programs for a first course in probability. The comprehensive text includes a multitude of new examples and exercises, and careful revisions throughout. Particular attention is given to the expansion of the last three chapters of the book with the addition of one entirely new chapter (9) on ’Finding and Comparing Estimators.’ The classroom-tested material presented in this second edition forms the basis for a second course introducing mathematical statistics.

Book Probability With a View Towards Statistics  Volume II

Download or read book Probability With a View Towards Statistics Volume II written by J. Hoffman-Jorgensen and published by Routledge. This book was released on 2017-11-22 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume II of this two-volume text and reference work concentrates on the applications of probability theory to statistics, e.g., the art of calculating densities of complicated transformations of random vectors, exponential models, consistency of maximum estimators, and asymptotic normality of maximum estimators. It also discusses topics of a pure probabilistic nature, such as stochastic processes, regular conditional probabilities, strong Markov chains, random walks, and optimal stopping strategies in random games. Unusual topics include the transformation theory of densities using Hausdorff measures, the consistency theory using the upper definition function, and the asymptotic normality of maximum estimators using twice stochastic differentiability. With an emphasis on applications to statistics, this is a continuation of the first volume, though it may be used independently of that book. Assuming a knowledge of linear algebra and analysis, as well as a course in modern probability, Volume II looks at statistics from a probabilistic point of view, touching only slightly on the practical computation aspects.

Book Theory of Random Sets

    Book Details:
  • Author : Ilya Molchanov
  • Publisher : Springer Science & Business Media
  • Release : 2005-05-11
  • ISBN : 9781852338923
  • Pages : 508 pages

Download or read book Theory of Random Sets written by Ilya Molchanov and published by Springer Science & Business Media. This book was released on 2005-05-11 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine

Book Probability With a View Towards Statistics

Download or read book Probability With a View Towards Statistics written by J. Hoffman-Jorgensen and published by CRC Press. This book was released on 1994-07-01 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume I of this two-volume text and reference work begins by providing a foundation in measure and integration theory. It then offers a systematic introduction to probability theory, and in particular, those parts that are used in statistics. This volume discusses the law of large numbers for independent and non-independent random variables, transforms, special distributions, convergence in law, the central limit theorem for normal and infinitely divisible laws, conditional expectations and martingales. Unusual topics include the uniqueness and convergence theorem for general transforms with characteristic functions, Laplace transforms, moment transforms and generating functions as special examples. The text contains substantive applications, e.g., epidemic models, the ballot problem, stock market models and water reservoir models, and discussion of the historical background. The exercise sets contain a variety of problems ranging from simple exercises to extensions of the theory.

Book Probability and Statistics

Download or read book Probability and Statistics written by Michael J. Evans and published by Macmillan. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.

Book Statistical Methods

    Book Details:
  • Author : Rudolf J. Freund
  • Publisher : Elsevier
  • Release : 2003-01-07
  • ISBN : 0080498221
  • Pages : 694 pages

Download or read book Statistical Methods written by Rudolf J. Freund and published by Elsevier. This book was released on 2003-01-07 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters

Book Foundations of Modern Probability

Download or read book Foundations of Modern Probability written by Olav Kallenberg and published by Springer Science & Business Media. This book was released on 2002-01-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.

Book Probability and Statistics for Computer Scientists  Second Edition

Download or read book Probability and Statistics for Computer Scientists Second Edition written by Michael Baron and published by CRC Press. This book was released on 2013-08-05 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.

Book Python for Probability  Statistics  and Machine Learning

Download or read book Python for Probability Statistics and Machine Learning written by José Unpingco and published by Springer. This book was released on 2019-06-29 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.

Book Theory of Probability

Download or read book Theory of Probability written by Bruno De Finetti and published by John Wiley & Sons. This book was released on 1992-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Probability in Physics

    Book Details:
  • Author : Yemima Ben-Menahem
  • Publisher : Springer Science & Business Media
  • Release : 2012-01-25
  • ISBN : 3642213286
  • Pages : 325 pages

Download or read book Probability in Physics written by Yemima Ben-Menahem and published by Springer Science & Business Media. This book was released on 2012-01-25 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.

Book Introductory Statistics 2e

Download or read book Introductory Statistics 2e written by Barbara Illowsky and published by . This book was released on 2023-12-13 with total page 2106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.

Book Handbook of Probability

Download or read book Handbook of Probability written by Ionut Florescu and published by John Wiley & Sons. This book was released on 2013-10-28 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introduction, historical background, theory and applications, algorithms, and exercises. The Handbook of Probability offers coverage of: Probability Space Probability Measure Random Variables Random Vectors in Rn Characteristic Function Moment Generating Function Gaussian Random Vectors Convergence Types Limit Theorems The Handbook of Probability is an ideal resource for researchers and practitioners in numerous fields, such as mathematics, statistics, operations research, engineering, medicine, and finance, as well as a useful text for graduate students.

Book All of Statistics

    Book Details:
  • Author : Larry Wasserman
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-11
  • ISBN : 0387217363
  • Pages : 446 pages

Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.