Download or read book Probability and Statistics by Example written by Yu. M. Suhov and published by Cambridge University Press. This book was released on 2014-09-22 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable resource for students and teachers alike, this second edition contains more than 200 worked examples and exam questions.
Download or read book Probability and Statistics by Example Volume 1 Basic Probability and Statistics written by Yuri Suhov and published by Cambridge University Press. This book was released on 2014-09-22 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and statistics are as much about intuition and problem solving as they are about theorem proving. Consequently, students can find it very difficult to make a successful transition from lectures to examinations to practice because the problems involved can vary so much in nature. Since the subject is critical in so many applications from insurance to telecommunications to bioinformatics, the authors have collected more than 200 worked examples and examination questions with complete solutions to help students develop a deep understanding of the subject rather than a superficial knowledge of sophisticated theories. With amusing stories and historical asides sprinkled throughout, this enjoyable book will leave students better equipped to solve problems in practice and under exam conditions.
Download or read book Probability and Statistics by Example Volume 1 Basic Probability and Statistics written by Yu. M. Suhov and published by Cambridge University Press. This book was released on 2005-10-13 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Statistics are as much about intuition and problem solving, as they are about theorem proving. Because of this, students can find it very difficult to make a successful transition from lectures to examinations to practice, since the problems involved can vary so much in nature. Since the subject is critical in many modern applications such as mathematical finance, quantitative management, telecommunications, signal processing, bioinformatics, as well as traditional ones such as insurance, social science and engineering, the authors have rectified deficiencies in traditional lecture-based methods by collecting together a wealth of exercises for which they have supplied complete solutions. These solutions are adapted to needs and skills of students. To make it of broad value, the authors supply basic mathematical facts as and when they are needed, and have sprinkled some historical information throughout the text.
Download or read book A Modern Introduction to Probability and Statistics written by F.M. Dekking and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Download or read book Probability and Statistical Inference written by J.G. Kalbfleisch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Probability and Statistics Using R written by G. Jay Kerns and published by Lulu.com. This book was released on 2010-01-10 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.
Download or read book Probability and Statistics written by Michael J. Evans and published by Macmillan. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.
Download or read book Probability and Statistical Inference written by J.G. Kalbfleisch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: A carefully written text, suitable as an introductory course for second or third year students. The main scope of the text guides students towards a critical understanding and handling of data sets together with the ensuing testing of hypotheses. This approach distinguishes it from many other texts using statistical decision theory as their underlying philosophy. This volume covers concepts from probability theory, backed by numerous problems with selected answers.
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Download or read book Probability and Statistics for Economists written by Bruce Hansen and published by Princeton University Press. This book was released on 2022-06-28 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and up-to-date introduction to the mathematics that all economics students need to know Probability theory is the quantitative language used to handle uncertainty and is the foundation of modern statistics. Probability and Statistics for Economists provides graduate and PhD students with an essential introduction to mathematical probability and statistical theory, which are the basis of the methods used in econometrics. This incisive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of the mathematics that every economist needs to know. Covers probability and statistics with mathematical rigor while emphasizing intuitive explanations that are accessible to economics students of all backgrounds Discusses random variables, parametric and multivariate distributions, sampling, the law of large numbers, central limit theory, maximum likelihood estimation, numerical optimization, hypothesis testing, and more Features hundreds of exercises that enable students to learn by doing Includes an in-depth appendix summarizing important mathematical results as well as a wealth of real-world examples Can serve as a core textbook for a first-semester PhD course in econometrics and as a companion book to Bruce E. Hansen’s Econometrics Also an invaluable reference for researchers and practitioners
Download or read book Probability and Statistics for Engineering and the Sciences written by Jay Devore and published by Cengage Learning. This book was released on 2007-01-26 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: This market-leading text provides a comprehensive introduction to probability and statistics for engineering students in all specialties. This proven, accurate book and its excellent examples evidence Jay Devore’s reputation as an outstanding author and leader in the academic community. Devore emphasizes concepts, models, methodology, and applications as opposed to rigorous mathematical development and derivations. Through the use of lively and realistic examples, students go beyond simply learning about statistics-they actually put the methods to use. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Download or read book An Introduction to Probability and Statistics written by Vijay K. Rohatgi and published by John Wiley & Sons. This book was released on 2015-09-01 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.
Download or read book Basic Concepts of Probability and Statistics written by J. L. Hodges, Jr. and published by SIAM. This book was released on 2004-12-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a mathematically rigorous introduction to the fundamental ideas of modern statistics for readers without a calculus background.
Download or read book Probability and Statistics for Data Science written by Norman Matloff and published by CRC Press. This book was released on 2019-06-21 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Download or read book Probability and Statistics for Engineers and Scientists written by Anthony J. Hayter and published by Thomson Brooks/Cole. This book was released on 2012 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROBABILITY AND STATISTICS FOR ENGINEERS AND SCIENTISTS, 4E, International Edition continues the approach that has made previous editions successful. As a teacher and researcher at a premier engineering school, author Tony Hayter is in touch with engineers daily—and understands their vocabulary. The result of this familiarity with the professional community is a clear and readable writing style that readers understand and appreciate, as well as high-interest, relevant examples and data sets that hold readers' attention. A flexible approach to the use of computer tools includes tips for using various software packages as well as computer output (using MINITAB and other programs) that offers practice in interpreting output. Extensive use of examples and data sets illustrates the importance of statistical data collection and analysis for students in a variety of engineering areas as well as for students in physics, chemistry, computing, biology, management, and mathematics.