EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Probabilistic Analysis of Belief Functions

Download or read book Probabilistic Analysis of Belief Functions written by Ivan Kramosil and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inspired by the eternal beauty and truth of the laws governing the run of stars on heavens over his head, and spurred by the idea to catch, perhaps for the smallest fraction of the shortest instant, the Eternity itself, man created such masterpieces of human intellect like the Platon's world of ideas manifesting eternal truths, like the Euclidean geometry, or like the Newtonian celestial me chanics. However, turning his look to the sub-lunar world of our everyday efforts, troubles, sorrows and, from time to time but very, very seldom, also our successes, he saw nothing else than a world full of uncertainty and tem porariness. One remedy or rather consolation was that of the deep and sage resignation offered by Socrates: I know, that I know nothing. But, happy or unhappy enough, the temptation to see and to touch at least a very small por tion of eternal truth also under these circumstances and behind phenomena charged by uncertainty was too strong. Probability theory in its most sim ple elementary setting entered the scene. It happened in the same, 17th and 18th centuries, when celestial mechanics with its classical Platonist paradigma achieved its greatest triumphs. The origins of probability theory were inspired by games of chance like roulettes, lotteries, dices, urn schemata, etc. and probability values were simply defined by the ratio of successful or winning results relative to the total number of possible outcomes.

Book Classic Works of the Dempster Shafer Theory of Belief Functions

Download or read book Classic Works of the Dempster Shafer Theory of Belief Functions written by Ronald R. Yager and published by Springer. This book was released on 2008-01-22 with total page 813 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.

Book Probabilistic Analysis of Belief Functions

Download or read book Probabilistic Analysis of Belief Functions written by Ivan Kramosil and published by Springer Science & Business Media. This book was released on 2001-12-31 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inspired by the eternal beauty and truth of the laws governing the run of stars on heavens over his head, and spurred by the idea to catch, perhaps for the smallest fraction of the shortest instant, the Eternity itself, man created such masterpieces of human intellect like the Platon's world of ideas manifesting eternal truths, like the Euclidean geometry, or like the Newtonian celestial me chanics. However, turning his look to the sub-lunar world of our everyday efforts, troubles, sorrows and, from time to time but very, very seldom, also our successes, he saw nothing else than a world full of uncertainty and tem porariness. One remedy or rather consolation was that of the deep and sage resignation offered by Socrates: I know, that I know nothing. But, happy or unhappy enough, the temptation to see and to touch at least a very small por tion of eternal truth also under these circumstances and behind phenomena charged by uncertainty was too strong. Probability theory in its most sim ple elementary setting entered the scene. It happened in the same, 17th and 18th centuries, when celestial mechanics with its classical Platonist paradigma achieved its greatest triumphs. The origins of probability theory were inspired by games of chance like roulettes, lotteries, dices, urn schemata, etc. and probability values were simply defined by the ratio of successful or winning results relative to the total number of possible outcomes.

Book A Mathematical Theory of Evidence

Download or read book A Mathematical Theory of Evidence written by Glenn Shafer and published by Princeton University Press. This book was released on 2020-06-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.

Book Belief Functions  Theory and Applications

Download or read book Belief Functions Theory and Applications written by Thierry Denoeux and published by Springer Science & Business Media. This book was released on 2012-04-26 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories. This volume contains the proceedings of the 2nd International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.

Book Graphical Belief Modeling

Download or read book Graphical Belief Modeling written by Russel .G Almond and published by Routledge. This book was released on 2022-01-26 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative volume explores graphical models using belief functions as a representation of uncertainty, offering an alternative approach to problems where probability proves inadequate. Graphical Belief Modeling makes it easy to compare the two approaches while evaluating their relative strengths and limitations. The author examines both theory and computation, incorporating practical notes from the author's own experience with the BELIEF software package. As one of the first volumes to apply the Dempster-Shafer belief functions to a practical model, a substantial portion of the book is devoted to a single example--calculating the reliability of a complex system. This special feature enables readers to gain a thorough understanding of the application of this methodology. The first section provides a description of graphical belief models and probablistic graphical models that form an important subset: the second section discusses the algorithm used in the manipulation of graphical models: the final segment of the book offers a complete description of the risk assessment example, as well as the methodology used to describe it. Graphical Belief Modeling offers researchers and graduate students in artificial intelligence and statistics more than just a new approach to an old reliability task: it provides them with an invaluable illustration of the process of graphical belief modeling.

Book Degrees of Belief

    Book Details:
  • Author : Franz Huber
  • Publisher : Springer Science & Business Media
  • Release : 2008-12-21
  • ISBN : 1402091982
  • Pages : 352 pages

Download or read book Degrees of Belief written by Franz Huber and published by Springer Science & Business Media. This book was released on 2008-12-21 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This anthology is the first book to give a balanced overview of the competing theories of degrees of belief. It also explicitly relates these debates to more traditional concerns of the philosophy of language and mind and epistemic logic.

Book Probability and Bayesian Modeling

Download or read book Probability and Bayesian Modeling written by Jim Albert and published by CRC Press. This book was released on 2019-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

Book Probabilistic Reasoning in Intelligent Systems

Download or read book Probabilistic Reasoning in Intelligent Systems written by Judea Pearl and published by Elsevier. This book was released on 2014-06-28 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

Book The Probabilistic Method

Download or read book The Probabilistic Method written by Noga Alon and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.

Book The Emergence of Probability

Download or read book The Emergence of Probability written by Ian Hacking and published by Cambridge University Press. This book was released on 2006-07-31 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historical records show that there was no real concept of probability in Europe before the mid-seventeenth century, although the use of dice and other randomizing objects was commonplace. First published in 1975, this edition includes an introduction that contextualizes his book in light of developing philosophical trends.

Book Introduction to Imprecise Probabilities

Download or read book Introduction to Imprecise Probabilities written by Thomas Augustin and published by John Wiley & Sons. This book was released on 2014-04-11 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the theory has become widely accepted and has beenfurther developed, but a detailed introduction is needed in orderto make the material available and accessible to a wide audience.This will be the first book providing such an introduction,covering core theory and recent developments which can be appliedto many application areas. All authors of individual chapters areleading researchers on the specific topics, assuring high qualityand up-to-date contents. An Introduction to Imprecise Probabilities provides acomprehensive introduction to imprecise probabilities, includingtheory and applications reflecting the current state if the art.Each chapter is written by experts on the respective topics,including: Sets of desirable gambles; Coherent lower (conditional)previsions; Special cases and links to literature; Decision making;Graphical models; Classification; Reliability and risk assessment;Statistical inference; Structural judgments; Aspects ofimplementation (including elicitation and computation); Models infinance; Game-theoretic probability; Stochastic processes(including Markov chains); Engineering applications. Essential reading for researchers in academia, researchinstitutes and other organizations, as well as practitionersengaged in areas such as risk analysis and engineering.

Book Probabilistic Knowledge

Download or read book Probabilistic Knowledge written by Sarah Moss and published by Oxford University Press. This book was released on 2018 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sarah Moss argues that in addition to full beliefs, credences can constitute knowledge. She introduces the notion of probabilistic content and shows how it plays a central role not only in epistemology, but in the philosophy of mind and language. Just you can believe and assert propositions, you can believe and assert probabilistic contents.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Rationality and Intelligence

Download or read book Rationality and Intelligence written by Jonathan Baron and published by Cambridge University Press. This book was released on 2005-07-07 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rationality and Intelligence develops and justifies a prescriptive theory of rational thinking in terms of utility theory and the theory of rational life plans. The prescriptive theory, buttressed by other assumptions, suggests that people generally think too little and in a way that is insufficiently critical of the initial possibilities that occur to them.

Book Degrees of Belief

Download or read book Degrees of Belief written by Steven G. Vick and published by ASCE Publications. This book was released on 2002-01-01 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Observing at a risk analysis conference for civil engineers that participants did not share a common language of probability, Vick, a consultant and geotechnic engineer, set out to not only examine why, but to also bridge the gap. He reexamines three elements at the core of engineering the concepts

Book Bayesian Rationality

    Book Details:
  • Author : Mike Oaksford
  • Publisher : Oxford University Press
  • Release : 2007-02-22
  • ISBN : 0198524498
  • Pages : 342 pages

Download or read book Bayesian Rationality written by Mike Oaksford and published by Oxford University Press. This book was released on 2007-02-22 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: For almost 2,500 years, the Western concept of what is to be human has been dominated by the idea that the mind is the seat of reason - humans are, almost by definition, the rational animal. In this text a more radical suggestion for explaining these puzzling aspects of human reasoning is put forward.