EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Printed Batteries

Download or read book Printed Batteries written by Senentxu Lanceros-Méndez and published by John Wiley & Sons. This book was released on 2018-04-23 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.

Book Printed Batteries

Download or read book Printed Batteries written by Senentxu Lanceros-Méndez and published by John Wiley & Sons. This book was released on 2018-02-21 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.

Book Advanced Materials for Printed Flexible Electronics

Download or read book Advanced Materials for Printed Flexible Electronics written by Colin Tong and published by Springer Nature. This book was released on 2021-10-04 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to printed flexible electronics and their applications, including the basics of modern printing technologies, printable inks, performance characterization, device design, modeling, and fabrication processes. A wide range of materials used for printed flexible electronics are also covered in depth. Bridging the gap between the creation of structure and function, printed flexible electronics have been explored for manufacturing of flexible, stretchable, wearable, and conformal electronics device with conventional, 3D, and hybrid printing technologies. Advanced materials such as polymers, ceramics, nanoparticles, 2D materials, and nanocomposites have enabled a wide variety of applications, such as transparent conductive films, thin film transistors, printable solar cells, flexible energy harvesting and storage devices, electroluminescent devices, and wearable sensors. This book provides students, researchers and engineers with the information to understand the current status and future trends in printed flexible electronics, and acquire skills for selecting and using materials and additive manufacturing processes in the design of printed flexible electronics.

Book Innovative Technologies for Printing and Packaging

Download or read book Innovative Technologies for Printing and Packaging written by Min Xu and published by Springer Nature. This book was released on 2023-03-03 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes original, peer-reviewed research papers from the 13th China Academic Conference on Printing and Packaging (CACPP 2022), held in Jinan, China, on November 10-12, 2022. The proceedings cover the recent findings in color science and technology, image processing technology, digital media technology, mechanical and electronic engineering and numerical control, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book is of interest to university researchers, R&D engineers, and graduate students in the field of graphic arts, packaging, color science, image science, material science, computer science, digital media, network technology, and smart manufacturing technology.

Book 3D Printing

    Book Details:
  • Author : Ram K. Gupta
  • Publisher : CRC Press
  • Release : 2023-04-18
  • ISBN : 1000850048
  • Pages : 507 pages

Download or read book 3D Printing written by Ram K. Gupta and published by CRC Press. This book was released on 2023-04-18 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D Printing: Fundamentals to Emerging Applications discusses the fundamentals of 3D-printing technologies and their emerging applications in many important sectors such as energy, biomedicals, and sensors. Top international authors in their fields cover the fundamentals of 3D-printing technologies for batteries, supercapacitors, fuel cells, sensors, and biomedical and other emerging applications. They also address current challenges and possible solutions in 3D-printing technologies for advanced applications. Key features: Addresses the state-of-the-art progress and challenges in 3D-printing technologies Explores the use of various materials in 3D printing for advanced applications Covers fundamentals of the electrochemical behavior of various materials for energy applications Provides new direction and enables understanding of the chemistry, electrochemical properties, and technologies for 3D printing This is a must-have resource for students as well as researchers and industry professionals working in energy, biomedicine, materials, and nanotechnology.

Book 3D Printing for Energy Applications

Download or read book 3D Printing for Energy Applications written by Albert Tarancón and published by John Wiley & Sons. This book was released on 2021-03-03 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.

Book Battery Management Systems for Large Lithium Ion Battery Packs

Download or read book Battery Management Systems for Large Lithium Ion Battery Packs written by Davide Andrea and published by Artech House. This book was released on 2010 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely book provides you with a solid understanding of battery management systems (BMS) in large Li-Ion battery packs, describing the important technical challenges in this field and exploring the most effective solutions. You find in-depth discussions on BMS topologies, functions, and complexities, helping you determine which permutation is right for your application. Packed with numerous graphics, tables, and images, the book explains the OC whysOCO and OC howsOCO of Li-Ion BMS design, installation, configuration and troubleshooting. This hands-on resource includes an unbiased description and comparison of all the off-the-shelf Li-Ion BMSs available today. Moreover, it explains how using the correct one for a given application can help to get a Li-Ion pack up and running in little time at low cost."

Book Encyclopedia of Electrochemical Power Sources

Download or read book Encyclopedia of Electrochemical Power Sources written by and published by Elsevier. This book was released on 2024-09-16 with total page 5674 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike

Book 3D Industrial Printing with Polymers

Download or read book 3D Industrial Printing with Polymers written by Johannes Karl Fink and published by John Wiley & Sons. This book was released on 2018-11-30 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D industrial printing has become mainstream in manufacturing. This unique book is the first to focus on polymers as the printing material. The scientific literature with respect to 3D printing is collated in this monograph. The book opens with a chapter on foundational issues such and presents a broad overview of 3D printing procedures and the materials used therein. In particular, the methods of 3d printing are discussed and the polymers and composites used for 3d printing are detailed. The book details the main fields of applications areas which include electric and magnetic uses, medical applications, and pharmaceutical applications. Electric and magnetic uses include electronic materials, actuators, piezoelectric materials, antennas, batteries and fuel cells. Medical applications are organ manufacturing, bone repair materials, drug-eluting coronary stents, and dental applications. The pharmaceutical applications are composite tablets, transdermal drug delivery, and patient-specific liquid capsules. A special chapter deals with the growing aircraft and automotive uses for 3D printing, such as with manufacturing of aircraft parts and aircraft cabins. In the field of cars, 3D printing is gaining importance for automotive parts (brake components, drives), for the fabrication of automotive repair systems, and even 3D printed vehicles.

Book Thin Films

Download or read book Thin Films written by Dongfang Yang and published by BoD – Books on Demand. This book was released on 2023-03-29 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thin film is a layer of material ranging from fractions of a nanometer to several micrometers in thickness. Thin films have been employed in many applications to provide surfaces that possess specific optical, electronic, chemical, mechanical and thermal properties. Through ten chapters consisting of original research studies and literature reviews written by experts from the international scientific community, this book covers the deposition and application of thin films.

Book Lithium Ion Battery Chemistries

Download or read book Lithium Ion Battery Chemistries written by John T. Warner and published by Elsevier. This book was released on 2019-05-10 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-Ion Battery Chemistries: A Primer offers a simple description on how different lithium-ion battery chemistries work, along with their differences. It includes a refresher on the basics of electrochemistry and thermodynamics, and an understanding of the fundamental processes that occur in the lithium-ion battery. Furthermore, it reviews each of the major chemistries that are in use today, including Lithium-Iron Phosphate (LFP), Lithium-Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium-Nickel Manganese Cobalt (NMC), Lithium-Nickel Cobalt Aluminium (NCA), and Lithium-Titanate Oxide (LTO) and outlines the different types of anodes, including carbon (graphite, hard carbon, soft carbon, graphene), silicon, and tin. In addition, the book offers performance comparisons of different chemistries to help users select the right battery for the right application and provides explanations on why different chemistries have different performances and capabilities. Finally, it offers a brief look at emerging and beyond-lithium chemistries, including lithium-air, zinc-air, aluminum air, solid-state, lithium-sulfur, lithium-glass, and lithium-metal. - Presents a refresher on the basics of electrochemistry and thermodynamics, along with simple graphics and images of complex concepts - Provides a clear-and-concise description of lithium-ion chemistries and how they operate - Covers the fundamental processes that occur in lithium-ion batteries - Includes a detailed review of current and future chemistries

Book Emerging Nanotechnologies in Nanocellulose

Download or read book Emerging Nanotechnologies in Nanocellulose written by Liangbing Hu and published by Springer Nature. This book was released on 2022-10-31 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides expert coverage of the current state of the art in the application of nanotechnologies to cellulose research. It offers a comprehensive collection of topics including nanocellulose isolation, assembly into hierarchical structures, and advanced emerging applications. During the past decades, research in nanocellulose has advanced quickly, driven by the urgent needs for sustainability and the availability of advanced nanotechniques. Although cellulose has been investigated and used for thousands of years, the recent advances in nanotechnology have transformed our view of this natural substance. Cellulose, when present in the highly crystalline nanoscale form, can demonstrate interesting mechanical, optical, and fluidic properties that can be manipulated in designing materials with novel applications. This book contains 12 chapters. Chapter 1 focuses primarily on the fundamentals of nanocellulose, including general aspects on its structure, isolation, and characterization. Chapters 2-4 summarize the recent progress on assembly of nanocellulose into the macroscopic scale using state-of-the-art techniques. Chapters 5-13 cover the most advanced applications of nanocellulose in emerging areas, including superstrong materials, light management, electronics, energy storage, printed battery, water treatment, nanogenerator, and biomedicine. The book will appeal to upper undergraduate and graduate students through practicing researchers as a comprehensive reference on the subject of nanocellulose and its use in various fields.

Book Chemical Solution Synthesis for Materials Design and Thin Film Device Applications

Download or read book Chemical Solution Synthesis for Materials Design and Thin Film Device Applications written by Soumen Das and published by Elsevier. This book was released on 2021-01-09 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. - Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications - Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques - Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing

Book Handbook of Flexible and Stretchable Electronics

Download or read book Handbook of Flexible and Stretchable Electronics written by Muhammad M. Hussain and published by CRC Press. This book was released on 2019-11-11 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexibility and stretchability of electronics are crucial for next generation electronic devices that involve skin contact sensing and therapeutic actuation. This handbook provides a complete entrée to the field, from solid-state physics to materials chemistry, processing, devices, performance, and reliability testing, and integrated systems development. This work shows how microelectronics, signal processing, and wireless communications in the same circuitry are impacting electronics, healthcare, and energy applications. Key Features: • Covers the fundamentals to device applications, including solid-state and mechanics, chemistry, materials science, characterization techniques, and fabrication; • Offers a comprehensive base of knowledge for moving forward in this field, from foundational research to technology development; • Focuses on processing, characterization, and circuits and systems integration for device applications; • Addresses the basic physical properties and mechanics, as well as the nuts and bolts of reliability and performance analysis; • Discusses various technology applications, from printed electronics to logic and memory devices, sensors, actuators, displays, and energy storage and harvesting. This handbook will serve as the one-stop knowledge base for readership who are interested in flexible and stretchable electronics.

Book Handbook of Industrial Inkjet Printing

Download or read book Handbook of Industrial Inkjet Printing written by Werner Zapka and published by John Wiley & Sons. This book was released on 2017-09-29 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique in its integration of individual topics to achieve a full-system approach, this book addresses all the aspects essential for industrial inkjet printing. After an introduction listing the industrial printing techniques available, the text goes on to discuss individual topics, such as ink, printheads and substrates, followed by metrology techniques that are required for reliable systems. Three iteration cycles are then described, including the adaptation of the ink to the printhead, the optimization of the ink to the substrate and the integration of machine manufacturing, monitoring, and data handling, among others. Finally, the book summarizes a number of case studies and success stories from selected areas, including graphics, printed electronics, and 3D printing as well a list of ink suppliers, printhead manufacturers and integrators. Practical hints are included throughout for a direct hands-on experience. Invaluable for industrial users and academics, whether ink developers or mechanical engineers, and working in areas ranging from metrology to intellectual property.

Book Screen Printing Technology for Energy Devices

Download or read book Screen Printing Technology for Energy Devices written by Andreas Willfahrt and published by Linköping University Electronic Press. This book was released on 2019-03-05 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: The technical application of screen and stencil printing has been state of the art for decades. As part of the subtractive production process of printed circuit boards, for instance, screen and stencil printing play an important role. With the end of the 20th century, another field has opened up with organic electronics. Since then, more and more functional layers have been produced using printing methods. Printed electronics devices offer properties that give almost every freedom to the creativity of product development. Flexibility, low weight, use of non-toxic materials, simple disposal and an enormous number of units due to the production process are some of the prominent keywords associated with this field. Screen printing is a widely used process in printed electronics, as this process is very flexible with regard to the materials that can be used. In addition, a minimum resolution of approximately 30 µm is sufficiently high. The ink film thickness, which can be controlled over a wide range, is an extremely important advantage of the process. Depending on the viscosity, layer thicknesses of several hundred nanometres up to several hundred micrometres can be realised. The conversion and storage of energy became an increasingly important topic in recent years. Since regenerative energy sources, such as photovoltaics or wind energy, often supply energy intermittently, appropriate storage systems must be available. This applies to large installations for the power supply of society, but also in the context of autarkic sensors, such as those used in the Internet of Things or domestic/industrial automation. A combination of micro-energy converters and energy storage devices is an adequate concept for providing energy for such applications. In this thesis the above mentioned keywords are addressed and the feasibility of printed thermoelectric energy converters and supercapacitors as energy storage devices are investigated. The efficiency of thermoelectric generators (TEG) is low, but in industrial environments, for example, a large amount of unused low temperature heat energy can be found. If the production costs of TEGs are low, conversion of this unused heat energy can contribute to increasing system efficiency. Additionally, printing of supercapacitor energy storage devices increases the usability of the TEG. It is appropriate to use both components as complementary parts in an energy system. Den tekniska tillämpningen av skärm- och stencilutskrift har varit toppmoderna i årtionden. Som en del av den subtraktiva produktionsprocessen av tryckta kretskort spelar exempelvis skärm- och stencilutskrift en viktig roll. I slutet av 1900-talet har ett annat fält öppnat med organisk elektronik. Sedan dess har allt fler funktionella lager producerats med hjälp av tryckmetoder. Tryckta elektronikanordningar erbjuder egenskaper som ger nästan all frihet till kreativiteten i produktutvecklingen. Flexibilitet, låg vikt, användning av giftfria material, enkelt bortskaffande och ett enormt antal enheter på grund av produktionsprocessen är några av de framträdande nyckelord som hör till detta område. Skärmtryck är en allmänt använd process i tryckt elektronik, eftersom processen är mycket flexibel med avseende på material som kan användas. Dessutom är en minsta upplösning på cirka 30 µm tillräckligt bra. Bläckfilmens tjocklek, som kan styras över ett brett område, är en extremt viktig fördel med processen. Beroende på viskositeten kan skikttjockleken på flera hundra nanometer upp till flera hundra mikrometer realiseras. Energikonvertering och lagring har blivit ett allt viktigare ämne de senaste åren. Eftersom regenerativa energikällor, såsom fotovoltaik eller vindkraft, ofta levererar energi intermittent, måste lämpliga lagringssystem vara tillgängliga. Detta gäller stora installationer för samhällets strömförsörjning, men också inom ramen för autarkiska sensorer, som de som används i saker av saker eller inhemsk / industriell automation. En kombination av mikroenergiomvandlare och energilagringsenheter är ett lämpligt koncept för att tillhandahålla energi för sådana applikationer. I denna avhandling behandlas ovan nämnda nyckelord. Genomförbarhet av tryckta termoelektriska energiomvandlare och superkapacitorer som energilagringsenheter undersöks. Effektiviteten hos termoelektriska generatorer (TEG) är låg, men i industriella miljöer kan exempelvis en stor mängd oanvänd låg temperatur värmeenergi hittas. Om produktionskostnaderna för TEG är låga kan konvertering av denna oanvända värmeenergi bidra till ökad systemeffektivitet. Dessutom ökar utskrift av superkapacitorer användbarheten hos TEG. Det är lämpligt att använda båda komponenterna.

Book Composite Electrolyte  amp  Electrode Membranes for Electrochemical Energy Storage  amp  Conversion Devices

Download or read book Composite Electrolyte amp Electrode Membranes for Electrochemical Energy Storage amp Conversion Devices written by Giovanni Battista Appetecchi and published by MDPI. This book was released on 2021-05-05 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochemical energy systems can successfully exploit beneficial characteristics of electrolyte and/or electrode membranes due to their intriguing peculiarities that make them well-established, standard components in devices such as fuel cells, electrolyzers, and flow batteries. Therefore, more and more researchers are attracted by these challenging yet important issues regarding the performance and behavior of the final device. This Special Issue of Membranes offers scientists and readers involved in these topics an appealing forum to bring and summarize the forthcoming Research & Development results, which stipulates that the composite electrolyte/electrode membranes should be tailored for lithium batteries and fuel cells. Various key aspects, such as synthesis/preparation of materials/components, investigation of the physicochemical and electrochemical properties, understanding of phenomena within the materials and electrolyte/electrode interface, and device manufacturing and performance, were presented and discussed using key research teams from internationally recognized experts in these fields.