EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Forecasting Volatility in the Financial Markets

Download or read book Forecasting Volatility in the Financial Markets written by Stephen Satchell and published by Elsevier. This book was released on 2011-02-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting Volatility in the Financial Markets, Third Edition assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting-edge modelling and forecasting techniques. It provides a survey of ways to measure risk and define the different models of volatility and return. Editors John Knight and Stephen Satchell have brought together an impressive array of contributors who present research from their area of specialization related to volatility forecasting. Readers with an understanding of volatility measures and risk management strategies will benefit from this collection of up-to-date chapters on the latest techniques in forecasting volatility. Chapters new to this third edition:* What good is a volatility model? Engle and Patton* Applications for portfolio variety Dan diBartolomeo* A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices Rob Cornish* Volatility modeling and forecasting in finance Xiao and Aydemir* An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility Thomas A. Silvey - Leading thinkers present newest research on volatility forecasting - International authors cover a broad array of subjects related to volatility forecasting - Assumes basic knowledge of volatility, financial mathematics, and modelling

Book Predicting Volatility

Download or read book Predicting Volatility written by Eric Ghysels and published by . This book was released on 2004 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in the length of the past history included in the forecasts. The MIDAS framework allows us to compare models across all these dimensions in a very tightly parameterized fashion. Using equity return data, we find that daily realized power (involving 5-minute absolute returns) is the best predictor of future volatility (measured by increments in quadratic variation) and outperforms model based on realized volatility (i.e. past increments in quadratic variation). Surprisingly, the direct use of high-frequency (5-minute) data does not improve volatility predictions. Finally, daily lags of one to two months are sucient to capture the persistence in volatility. These findings hold both in- and out-of-sample.

Book Financial Risk Forecasting

Download or read book Financial Risk Forecasting written by Jon Danielsson and published by John Wiley & Sons. This book was released on 2011-04-20 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.

Book Volatility and Correlation

Download or read book Volatility and Correlation written by Riccardo Rebonato and published by John Wiley & Sons. This book was released on 2005-07-08 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Volatility and Correlation 2nd edition: The Perfect Hedger and the Fox, Rebonato looks at derivatives pricing from the angle of volatility and correlation. With both practical and theoretical applications, this is a thorough update of the highly successful Volatility & Correlation – with over 80% new or fully reworked material and is a must have both for practitioners and for students. The new and updated material includes a critical examination of the ‘perfect-replication’ approach to derivatives pricing, with special attention given to exotic options; a thorough analysis of the role of quadratic variation in derivatives pricing and hedging; a discussion of the informational efficiency of markets in commonly-used calibration and hedging practices. Treatment of new models including Variance Gamma, displaced diffusion, stochastic volatility for interest-rate smiles and equity/FX options. The book is split into four parts. Part I deals with a Black world without smiles, sets out the author’s ‘philosophical’ approach and covers deterministic volatility. Part II looks at smiles in equity and FX worlds. It begins with a review of relevant empirical information about smiles, and provides coverage of local-stochastic-volatility, general-stochastic-volatility, jump-diffusion and Variance-Gamma processes. Part II concludes with an important chapter that discusses if and to what extent one can dispense with an explicit specification of a model, and can directly prescribe the dynamics of the smile surface. Part III focusses on interest rates when the volatility is deterministic. Part IV extends this setting in order to account for smiles in a financially motivated and computationally tractable manner. In this final part the author deals with CEV processes, with diffusive stochastic volatility and with Markov-chain processes. Praise for the First Edition: “In this book, Dr Rebonato brings his penetrating eye to bear on option pricing and hedging.... The book is a must-read for those who already know the basics of options and are looking for an edge in applying the more sophisticated approaches that have recently been developed.” —Professor Ian Cooper, London Business School “Volatility and correlation are at the very core of all option pricing and hedging. In this book, Riccardo Rebonato presents the subject in his characteristically elegant and simple fashion...A rare combination of intellectual insight and practical common sense.” —Anthony Neuberger, London Business School

Book Asset Price Dynamics  Volatility  and Prediction

Download or read book Asset Price Dynamics Volatility and Prediction written by Stephen J. Taylor and published by Princeton University Press. This book was released on 2011-02-11 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how current and recent market prices convey information about the probability distributions that govern future prices. Moving beyond purely theoretical models, Stephen Taylor applies methods supported by empirical research of equity and foreign exchange markets to show how daily and more frequent asset prices, and the prices of option contracts, can be used to construct and assess predictions about future prices, their volatility, and their probability distributions. Stephen Taylor provides a comprehensive introduction to the dynamic behavior of asset prices, relying on finance theory and statistical evidence. He uses stochastic processes to define mathematical models for price dynamics, but with less mathematics than in alternative texts. The key topics covered include random walk tests, trading rules, ARCH models, stochastic volatility models, high-frequency datasets, and the information that option prices imply about volatility and distributions. Asset Price Dynamics, Volatility, and Prediction is ideal for students of economics, finance, and mathematics who are studying financial econometrics, and will enable researchers to identify and apply appropriate models and methods. It will likewise be a valuable resource for quantitative analysts, fund managers, risk managers, and investors who seek realistic expectations about future asset prices and the risks to which they are exposed.

Book Time Series Models

Download or read book Time Series Models written by D.R. Cox and published by CRC Press. This book was released on 2020-11-26 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis prediction and interpolation of economic and other time series has a long history and many applications. Major new developments are taking place, driven partly by the need to analyze financial data. The five papers in this book describe those new developments from various viewpoints and are intended to be an introduction accessible to readers from a range of backgrounds. The book arises out of the second Seminaire European de Statistique (SEMSTAT) held in Oxford in December 1994. This brought together young statisticians from across Europe, and a series of introductory lectures were given on topics at the forefront of current research activity. The lectures form the basis for the five papers contained in the book. The papers by Shephard and Johansen deal respectively with time series models for volatility, i.e. variance heterogeneity, and with cointegration. Clements and Hendry analyze the nature of prediction errors. A complementary review paper by Laird gives a biometrical view of the analysis of short time series. Finally Astrup and Nielsen give a mathematical introduction to the study of option pricing. Whilst the book draws its primary motivation from financial series and from multivariate econometric modelling, the applications are potentially much broader.

Book Machine Learning for Financial Risk Management with Python

Download or read book Machine Learning for Financial Risk Management with Python written by Abdullah Karasan and published by "O'Reilly Media, Inc.". This book was released on 2021-12-07 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models

Book A Practical Guide to Forecasting Financial Market Volatility

Download or read book A Practical Guide to Forecasting Financial Market Volatility written by Ser-Huang Poon and published by John Wiley & Sons. This book was released on 2005-08-19 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.

Book Handbook of Financial Time Series

Download or read book Handbook of Financial Time Series written by Torben Gustav Andersen and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.

Book Forecasting Volatility in the Financial Markets

Download or read book Forecasting Volatility in the Financial Markets written by John Knight and published by Butterworth-Heinemann. This book was released on 1998 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: An aid to understanding the significance of volatility in the financial market, this text details modelling/forecasting techniques and uses a technical survey to define the models of volatility and return and explain the ways to measure risk. Applications in the financial markets are then detailed.

Book The Oxford Handbook of Economic Forecasting

Download or read book The Oxford Handbook of Economic Forecasting written by Michael P. Clements and published by OUP USA. This book was released on 2011-07-08 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.

Book Volatility Trading    website

Download or read book Volatility Trading website written by Euan Sinclair and published by John Wiley & Sons. This book was released on 2008-06-23 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Volatility Trading, Sinclair offers you a quantitative model for measuring volatility in order to gain an edge in your everyday option trading endeavors. With an accessible, straightforward approach. He guides traders through the basics of option pricing, volatility measurement, hedging, money management, and trade evaluation. In addition, Sinclair explains the often-overlooked psychological aspects of trading, revealing both how behavioral psychology can create market conditions traders can take advantage of-and how it can lead them astray. Psychological biases, he asserts, are probably the drivers behind most sources of edge available to a volatility trader. Your goal, Sinclair explains, must be clearly defined and easily expressed-if you cannot explain it in one sentence, you probably aren't completely clear about what it is. The same applies to your statistical edge. If you do not know exactly what your edge is, you shouldn't trade. He shows how, in addition to the numerical evaluation of a potential trade, you should be able to identify and evaluate the reason why implied volatility is priced where it is, that is, why an edge exists. This means it is also necessary to be on top of recent news stories, sector trends, and behavioral psychology. Finally, Sinclair underscores why trades need to be sized correctly, which means that each trade is evaluated according to its projected return and risk in the overall context of your goals. As the author concludes, while we also need to pay attention to seemingly mundane things like having good execution software, a comfortable office, and getting enough sleep, it is knowledge that is the ultimate source of edge. So, all else being equal, the trader with the greater knowledge will be the more successful. This book, and its companion CD-ROM, will provide that knowledge. The CD-ROM includes spreadsheets designed to help you forecast volatility and evaluate trades together with simulation engines.

Book Deep Learning Tools for Predicting Stock Market Movements

Download or read book Deep Learning Tools for Predicting Stock Market Movements written by Renuka Sharma and published by John Wiley & Sons. This book was released on 2024-04-10 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING TOOLS for PREDICTING STOCK MARKET MOVEMENTS The book provides a comprehensive overview of current research and developments in the field of deep learning models for stock market forecasting in the developed and developing worlds. The book delves into the realm of deep learning and embraces the challenges, opportunities, and transformation of stock market analysis. Deep learning helps foresee market trends with increased accuracy. With advancements in deep learning, new opportunities in styles, tools, and techniques evolve and embrace data-driven insights with theories and practical applications. Learn about designing, training, and applying predictive models with rigorous attention to detail. This book offers critical thinking skills and the cultivation of discerning approaches to market analysis. The book: details the development of an ensemble model for stock market prediction, combining long short-term memory and autoregressive integrated moving average; explains the rapid expansion of quantum computing technologies in financial systems; provides an overview of deep learning techniques for forecasting stock market trends and examines their effectiveness across different time frames and market conditions; explores applications and implications of various models for causality, volatility, and co-integration in stock markets, offering insights to investors and policymakers. Audience The book has a wide audience of researchers in financial technology, financial software engineering, artificial intelligence, professional market investors, investment institutions, and asset management companies.

Book Volatility and Time Series Econometrics

Download or read book Volatility and Time Series Econometrics written by Mark Watson and published by Oxford University Press. This book was released on 2010-02-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A volume that celebrates and develops the work of Nobel Laureate Robert Engle, it includes original contributions from some of the world's leading econometricians that further Engle's work in time series economics

Book Introductory Econometrics for Finance

Download or read book Introductory Econometrics for Finance written by Chris Brooks and published by Cambridge University Press. This book was released on 2008-05-22 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: This best-selling introduction to econometrics is specifically written for finance students. The new edition builds on the successful data- and problem-driven approach of the first edition, giving students the skills to estimate and interpret models while developing an intuitive grasp of underlying theoretical concepts.

Book Volatility Modeling in Finance

Download or read book Volatility Modeling in Finance written by William Johnson and published by HiTeX Press. This book was released on 2024-10-17 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Volatility Modeling in Finance: Techniques for Trading Strategies" offers an incisive look into the pivotal concept of volatility, essential for anyone navigating the financial markets. This comprehensive guide demystifies the intricate dynamics of volatility, combining theoretical insights with practical applications. From understanding the foundational types of volatility to leveraging advanced models like GARCH and stochastic frameworks, the book equips readers with the necessary tools to assess risk and seize opportunities within fluctuating markets. Each chapter is meticulously structured to build on core principles, while incorporating cutting-edge techniques such as machine learning and algorithmic trading. Whether you're a novice seeking to deepen your understanding or a seasoned professional aiming to refine your strategies, this book presents a wealth of knowledge, enriched with case studies and real-world examples. Through its detailed exploration, readers will gain the foresight and strategies needed to capitalize on volatility, transforming a formidable challenge into a powerful ally in the pursuit of financial success.

Book Predicting Forex and Stock Market with Fractal Pattern

Download or read book Predicting Forex and Stock Market with Fractal Pattern written by Young Ho Seo and published by www.algotrading-investment.com. This book was released on 2020-04-09 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: About this book This book provides you the powerful and brand new knowledge on predicting financial market that we have discovered in several years of our own research and development work. This book will help you to turn your intuition into the scientific prediction method. In the course of recognizing the price patterns in the chart of Forex and Stock market, you should be realized that it was your intuition working at the background for you. The geometric prediction devised in this book will show you the scientific way to predict the financial market using your intuition. Many of us made a mistake of viewing the financial market with deterministic cycle. Even though we knew that market would not show us such a simple prediction pattern, we never stop using the concept of deterministic cycle to predict the financial market, for example, using Fourier transform, and other similar techniques. Why is that so? The reason is simple. It is because no one presented an effective way of predicting stochastic cycle. Stochastic cycle is the true face of the financial market because many variables in the market are suppressing the predictable cycle with fixed time interval. So how we predict the stochastic cycle present in the financial market? The key to answer is the Fractal Pattern and Fractal Wave. The geometric prediction on Fractal Wave solves the puzzles of the stochastic cycle modelling problem together. In another words, your intuition, more precisely your capability to recognize geometric shape, is more powerful than any other technical indicators available in the market. Hence, the geometric prediction, which comes from your intuition, would maximize your ability to trade in the financial market. In this book, Geometric prediction is described as the combined ability to recognize the geometric regularity and statistical regularity from the chart. We provide the examples of geometric regularity and statistical regularity. In addition, we will show you how these regularities are related to your intuition. The chart patterns covered in this book include support, resistance, Fibonacci Price pattern, Harmonic Pattern, Falling Wedge pattern, Rising Wedge pattern, and Gann Angles with probability. We use these chart patterns to detect geometric regularity. Then, we use the turning point probability as the mean of detecting statistical regularity. In our trading, we combine both to improve the trading performance.