Download or read book Pragmatic Machine Learning with Python written by Avishek Nag and published by BPB Publications. This book was released on 2020-04-30 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy-to-understand guide to learn practical Machine Learning techniques with Mathematical foundations KEY FEATURESÊ - A balanced combination of underlying mathematical theories & practical examples with Python code - Coverage of latest topics like multi-label classification, Text Mining, Doc2Vec, Word2Vec, XMeans clustering, unsupervised outlier detection, techniques to deploy ML models in production-grade systemsÊ with PMML, etc - Coverage of sufficient & relevant visualization techniques specific to any topic DESCRIPTIONÊ This book will be ideal for working professionals who want to learn Machine Learning from scratch. The first chapter will be an introductory chapter to make readers comfortable with the idea of Machine Learning and the required mathematical theories. There will be a balanced combination of underlying mathematical theories corresponding to any Machine Learning topic and its implementation using Python. Most of the implementations will be based on Ôscikit-learn,Õ but other Python libraries like ÔGensimÕ or ÔPyTorchÕ will also be used for some topics like text analytics or deep learning. The book will be divided into chapters based on primary Machine Learning topics like Classification, Regression, Clustering, Deep Learning, Text Mining, etc. The book will also explain different techniques of putting Machine Learning models into production-grade systems using Big Data or Non-Big Data flavors and standards for exporting models.Ê WHAT WILL YOU LEARNÊ - Get familiar with practical concepts of Machine Learning from ground zero - Learn how to deploy Machine Learning models in production - Understand how to do ÒData Science StorytellingÓÊ - Explore the latest topics in the current industry about Machine Learning WHO THIS BOOK IS FORÊÊ This book would be ideal for experienced Software Professionals who are trying to get into the field of Machine Learning. Anyone who wishes to Learn Machine Learning concepts and models in the production lifecycle. TABLE OF CONTENTS 1. Introduction to Machine Learning & Mathematical preliminaries 2. Classification 3. Regression 4. Clustering 5. Deep Learning & Neural Networks 6. Miscellaneous Unsupervised Learning 7. Text Mining 8. Machine Learning models in production 9. Case Studies & Data Science Storytelling
Download or read book Pragmatic AI written by Noah Gift and published by Addison-Wesley Professional. This book was released on 2018-07-12 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Download or read book Programming Machine Learning written by Paolo Perrotta and published by Pragmatic Bookshelf. This book was released on 2020-03-31 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain.
Download or read book Survival Analysis with Python written by Avishek Nag and published by CRC Press. This book was released on 2021-12-17 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis uses statistics to calculate time to failure. Survival Analysis with Python takes a fresh look at this complex subject by explaining how to use the Python programming language to perform this type of analysis. As the subject itself is very mathematical and full of expressions and formulations, the book provides detailed explanations and examines practical implications. The book begins with an overview of the concepts underpinning statistical survival analysis. It then delves into Parametric models with coverage of Concept of maximum likelihood estimate (MLE) of a probability distribution parameter MLE of the survival function Common probability distributions and their analysis Analysis of exponential distribution as a survival function Analysis of Weibull distribution as a survival function Derivation of Gumbel distribution as a survival function from Weibull Non-parametric models including Kaplan–Meier (KM) estimator, a derivation of expression using MLE Fitting KM estimator with an example dataset, Python code and plotting curves Greenwood’s formula and its derivation Models with covariates explaining The concept of time shift and the accelerated failure time (AFT) model Weibull-AFT model and derivation of parameters by MLE Proportional Hazard (PH) model Cox-PH model and Breslow’s method Significance of covariates Selection of covariates The Python lifelines library is used for coding examples. By mapping theory to practical examples featuring datasets, this book is a hands-on tutorial as well as a handy reference.
Download or read book Python for DevOps written by Noah Gift and published by O'Reilly Media. This book was released on 2019-12-12 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today’s most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you’ll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and operationalize your software. Looking for effective ways to "get stuff done" in Python? This is your guide. Python foundations, including a brief introduction to the language How to automate text, write command-line tools, and automate the filesystem Linux utilities, package management, build systems, monitoring and instrumentation, and automated testing Cloud computing, infrastructure as code, Kubernetes, and serverless Machine learning operations and data engineering from a DevOps perspective Building, deploying, and operationalizing a machine learning project
Download or read book Genetic Algorithms and Machine Learning for Programmers written by Frances Buontempo and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to machine learning. Discover machine learning algorithms using a handful of self-contained recipes. Create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, and cellular automata. Find minima and maxima, using hill climbing and simulated annealing. Try selection mathods, including tournament and roulette wheels. Learn about heuristics, fitness functions, metrics, and clusters.
Download or read book Practical Machine Learning with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2017-12-20 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students
Download or read book Advanced Machine Learning with Python written by John Hearty and published by Packt Publishing Ltd. This book was released on 2016-07-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python About This Book Resolve complex machine learning problems and explore deep learning Learn to use Python code for implementing a range of machine learning algorithms and techniques A practical tutorial that tackles real-world computing problems through a rigorous and effective approach Who This Book Is For This title is for Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution, or of entering a Kaggle contest for instance, this book is for you! Prior experience of Python and grounding in some of the core concepts of machine learning would be helpful. What You Will Learn Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Apply your new found skills to solve real problems, through clearly-explained code for every technique and test Automate large sets of complex data and overcome time-consuming practical challenges Improve the accuracy of models and your existing input data using powerful feature engineering techniques Use multiple learning techniques together to improve the consistency of results Understand the hidden structure of datasets using a range of unsupervised techniques Gain insight into how the experts solve challenging data problems with an effective, iterative, and validation-focused approach Improve the effectiveness of your deep learning models further by using powerful ensembling techniques to strap multiple models together In Detail Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering. Style and approach This book focuses on clarifying the theory and code behind complex algorithms to make them practical, useable, and well-understood. Each topic is described with real-world applications, providing both broad contextual coverage and detailed guidance.
Download or read book Machine Learning for Beginners written by Dr. Harsh Bhasin and published by BPB Publications. This book was released on 2023-10-16 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to build a complete machine learning pipeline by mastering feature extraction, feature selection, and algorithm training KEY FEATURES ● Develop a solid understanding of foundational principles in machine learning. ● Master regression and classification methods for accurate data prediction and categorization in machine learning. ● Dive into advanced machine learning topics, including unsupervised learning and deep learning. DESCRIPTION The second edition of “Machine Learning for Beginners” addresses key concepts and subjects in machine learning. The book begins with an introduction to the foundational principles of machine learning, followed by a discussion of data preprocessing. It then delves into feature extraction and feature selection, providing comprehensive coverage of various techniques such as the Fourier transform, short-time Fourier transform, and local binary patterns. Moving on, the book discusses principal component analysis and linear discriminant analysis. Next, the book covers the topics of model representation, training, testing, and cross-validation. It emphasizes regression and classification, explaining and implementing methods such as gradient descent. Essential classification techniques, including k-nearest neighbors, logistic regression, and naive Bayes, are also discussed in detail. The book then presents an overview of neural networks, including their biological background, the limitations of the perceptron, and the backpropagation model. It also covers support vector machines and kernel methods. Decision trees and ensemble models are also discussed. The final section of the book provides insight into unsupervised learning and deep learning, offering readers a comprehensive overview of these advanced topics. By the end of the book, you will be well-prepared to explore and apply machine learning in various real-world scenarios. WHAT YOU WILL LEARN ● Acquire skills to effectively prepare data for machine learning tasks. ● Learn how to implement learning algorithms from scratch. ● Harness the power of scikit-learn to efficiently implement common algorithms. ● Get familiar with various Feature Selection and Feature Extraction methods. ● Learn how to implement clustering algorithms. WHO THIS BOOK IS FOR This book is for both undergraduate and postgraduate Computer Science students as well as professionals looking to transition into the captivating realm of Machine Learning, assuming a foundational familiarity with Python. TABLE OF CONTENTS Section I: Fundamentals 1. An Introduction to Machine Learning 2. The Beginning: Data Pre-Processing 3. Feature Selection 4. Feature Extraction 5. Model Development Section II: Supervised Learning 6. Regression 7. K-Nearest Neighbors 8. Classification: Logistic Regression and Naïve Bayes Classifier 9. Neural Network I: The Perceptron 10. Neural Network II: The Multi-Layer Perceptron 11. Support Vector Machines 12. Decision Trees 13. An Introduction to Ensemble Learning Section III: Unsupervised Learning and Deep Learning 14. Clustering 15. Deep Learning Appendix 1: Glossary Appendix 2: Methods/Techniques Appendix 3: Important Metrics and Formulas Appendix 4: Visualization- Matplotlib Answers to Multiple Choice Questions Bibliography
Download or read book Machine Learning Engineering with Python written by Andrew P. McMahon and published by Packt Publishing Ltd. This book was released on 2021-11-05 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book DescriptionMachine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.
Download or read book Python Natural Language Processing written by Jalaj Thanaki and published by Packt Publishing Ltd. This book was released on 2017-07-31 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.
Download or read book Practical Machine Learning written by Sunila Gollapudi and published by Packt Publishing Ltd. This book was released on 2016-01-30 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and integrate your machine learning projects with Hadoop Who This Book Is For This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately. What You Will Learn Implement a wide range of algorithms and techniques for tackling complex data Get to grips with some of the most powerful languages in data science, including R, Python, and Julia Harness the capabilities of Spark and Hadoop to manage and process data successfully Apply the appropriate machine learning technique to address real-world problems Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more In Detail Finding meaning in increasingly larger and more complex datasets is a growing demand of the modern world. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. Machine learning uses complex algorithms to make improved predictions of outcomes based on historical patterns and the behaviour of data sets. Machine learning can deliver dynamic insights into trends, patterns, and relationships within data, immensely valuable to business growth and development. This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data. This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naive Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies. Style and approach A practical data science tutorial designed to give you an insight into the practical application of machine learning, this book takes you through complex concepts and tasks in an accessible way. Featuring information on a wide range of data science techniques, Practical Machine Learning is a comprehensive data science resource.
Download or read book Deep Learning with PyTorch written by Luca Pietro Giovanni Antiga and published by Simon and Schuster. This book was released on 2020-07-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production
Download or read book Machine Learning Cookbook with Python written by Rehan Guha and published by BPB Publications. This book was released on 2020-11-12 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Cookbook that will help you implement Machine Learning algorithms and techniques by building real-world projects Ê KEY FEATURESÊ Learn how to handle an entire Machine Learning Pipeline supported with adequate mathematics. Create Predictive Models and choose the right model for various types of Datasets. Learn the art of tuning a model to improve accuracy as per Business requirements. Get familiar with concepts related to Data Analytics with Visualization, Data Science and Machine Learning. DESCRIPTION Machine Learning does not have to be intimidating at all. This book focuses on the concepts of Machine Learning and Data Analytics with mathematical explanations and programming examples. All the codes are written in Python as it is one of the most popular programming languages used for Data Science and Machine Learning. Here I have leveraged multiple libraries like NumPy, Pandas, scikit-learn, etc. to ease our task and not reinvent the wheel. There are five projects in total, each addressing a unique problem. With the recipes in this cookbook, one will learn how to solve Machine Learning problems for real-time data and perform Data Analysis and Analytics, Classification, and beyond. The datasets used are also unique and will help one to think, understand the problem and proceed towards the goal. The book is not saturated with Mathematics, but mostly all the Mathematical concepts are covered for the important topics. Every chapter typically starts with some theory and prerequisites, and then it gradually dives into the implementation of the same concept using Python, keeping a project in the background.Ê Ê WHAT WILL YOU LEARN Understand the working of the O.S.E.M.N. framework in Data Science.Ê Get familiar with the end-to-end implementation of Machine Learning Pipeline. Learn how to implement Machine Learning algorithms and concepts using Python. Learn how to build a Predictive Model for a Business case. WHO THIS BOOK IS FORÊ This cookbook is meant for anybody who is passionate enough to get into the World of Machine Learning and has a preliminary understanding of the Basics of Linear Algebra, Calculus, Probability, and Statistics. This book also serves as a reference guidebook for intermediate Machine Learning practitioners. Ê TABLE OF CONTENTS 1. Boston Crime 2. World Happiness Report 3. Iris Species 4. Credit Card Fraud Detection 5. Heart Disease UCI
Download or read book The Pragmatic Programmer written by Andrew Hunt and published by Addison-Wesley Professional. This book was released on 1999-10-20 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: What others in the trenches say about The Pragmatic Programmer... “The cool thing about this book is that it’s great for keeping the programming process fresh. The book helps you to continue to grow and clearly comes from people who have been there.” — Kent Beck, author of Extreme Programming Explained: Embrace Change “I found this book to be a great mix of solid advice and wonderful analogies!” — Martin Fowler, author of Refactoring and UML Distilled “I would buy a copy, read it twice, then tell all my colleagues to run out and grab a copy. This is a book I would never loan because I would worry about it being lost.” — Kevin Ruland, Management Science, MSG-Logistics “The wisdom and practical experience of the authors is obvious. The topics presented are relevant and useful.... By far its greatest strength for me has been the outstanding analogies—tracer bullets, broken windows, and the fabulous helicopter-based explanation of the need for orthogonality, especially in a crisis situation. I have little doubt that this book will eventually become an excellent source of useful information for journeymen programmers and expert mentors alike.” — John Lakos, author of Large-Scale C++ Software Design “This is the sort of book I will buy a dozen copies of when it comes out so I can give it to my clients.” — Eric Vought, Software Engineer “Most modern books on software development fail to cover the basics of what makes a great software developer, instead spending their time on syntax or technology where in reality the greatest leverage possible for any software team is in having talented developers who really know their craft well. An excellent book.” — Pete McBreen, Independent Consultant “Since reading this book, I have implemented many of the practical suggestions and tips it contains. Across the board, they have saved my company time and money while helping me get my job done quicker! This should be a desktop reference for everyone who works with code for a living.” — Jared Richardson, Senior Software Developer, iRenaissance, Inc. “I would like to see this issued to every new employee at my company....” — Chris Cleeland, Senior Software Engineer, Object Computing, Inc. “If I’m putting together a project, it’s the authors of this book that I want. . . . And failing that I’d settle for people who’ve read their book.” — Ward Cunningham Straight from the programming trenches, The Pragmatic Programmer cuts through the increasing specialization and technicalities of modern software development to examine the core process--taking a requirement and producing working, maintainable code that delights its users. It covers topics ranging from personal responsibility and career development to architectural techniques for keeping your code flexible and easy to adapt and reuse. Read this book, and you'll learn how to Fight software rot; Avoid the trap of duplicating knowledge; Write flexible, dynamic, and adaptable code; Avoid programming by coincidence; Bullet-proof your code with contracts, assertions, and exceptions; Capture real requirements; Test ruthlessly and effectively; Delight your users; Build teams of pragmatic programmers; and Make your developments more precise with automation. Written as a series of self-contained sections and filled with entertaining anecdotes, thoughtful examples, and interesting analogies, The Pragmatic Programmer illustrates the best practices and major pitfalls of many different aspects of software development. Whether you're a new coder, an experienced programmer, or a manager responsible for software projects, use these lessons daily, and you'll quickly see improvements in personal productivity, accuracy, and job satisfaction. You'll learn skills and develop habits and attitudes that form the foundation for long-term success in your career. You'll become a Pragmatic Programmer.
Download or read book Building Machine Learning Powered Applications written by Emmanuel Ameisen and published by "O'Reilly Media, Inc.". This book was released on 2020-01-21 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the skills necessary to design, build, and deploy applications powered by machine learning (ML). Through the course of this hands-on book, you’ll build an example ML-driven application from initial idea to deployed product. Data scientists, software engineers, and product managers—including experienced practitioners and novices alike—will learn the tools, best practices, and challenges involved in building a real-world ML application step by step. Author Emmanuel Ameisen, an experienced data scientist who led an AI education program, demonstrates practical ML concepts using code snippets, illustrations, screenshots, and interviews with industry leaders. Part I teaches you how to plan an ML application and measure success. Part II explains how to build a working ML model. Part III demonstrates ways to improve the model until it fulfills your original vision. Part IV covers deployment and monitoring strategies. This book will help you: Define your product goal and set up a machine learning problem Build your first end-to-end pipeline quickly and acquire an initial dataset Train and evaluate your ML models and address performance bottlenecks Deploy and monitor your models in a production environment
Download or read book Deep Learning with Applications Using Python written by Navin Kumar Manaswi and published by Apress. This book was released on 2018-04-04 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore deep learning applications, such as computer vision, speech recognition, and chatbots, using frameworks such as TensorFlow and Keras. This book helps you to ramp up your practical know-how in a short period of time and focuses you on the domain, models, and algorithms required for deep learning applications. Deep Learning with Applications Using Python covers topics such as chatbots, natural language processing, and face and object recognition. The goal is to equip you with the concepts, techniques, and algorithm implementations needed to create programs capable of performing deep learning. This book covers convolutional neural networks, recurrent neural networks, and multilayer perceptrons. It also discusses popular APIs such as IBM Watson, Microsoft Azure, and scikit-learn. What You Will Learn Work with various deep learning frameworks such as TensorFlow, Keras, and scikit-learn. Use face recognition and face detection capabilities Create speech-to-text and text-to-speech functionality Engage with chatbots using deep learning Who This Book Is For Data scientists and developers who want to adapt and build deep learning applications.