EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Practical Data Analytics for BFSI

Download or read book Practical Data Analytics for BFSI written by Bharat Sikka and published by Orange Education Pvt Ltd. This book was released on 2023-09-02 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revolutionizing BFSI with Data Analytics KEY FEATURES ● Real-world examples and exercises will ground you in the practical application of analytics techniques specific to BFSI. ● Master Python for essential coding, SQL for data manipulation, and industry-leading tools like IBM SPSS and Power BI for sophisticated analyses. ● Understand how data-driven strategies generate profits, mitigate risks, and redefine customer support dynamics within the BFSI sphere. DESCRIPTION Are you looking to unlock the transformative potential of data analytics in the dynamic world of Banking, Financial Services, and Insurance (BFSI)? This book is your essential guide to mastering the intricate interplay of data science and analytics that underpins the BFSI landscape. Designed for intermediate-level practitioners, as well as those aspiring to join the ranks of BFSI analytics professionals, this book is your compass in the data-driven realm of banking. Address the unique challenges and opportunities of the BFSI sector using Artificial Intelligence and Machine Learning models for a data driven analysis. This book is a step by step guide to utilize tools like IBM SPSS and Microsoft Power BI. Hands-on examples that utilize Python and SQL programming languages make this an essential guide. The book features numerous case studies that illuminate various use cases of Analytics in BFSI. Each chapter is enriched with practical insights and concludes with a valuable multiple-choice questionnaire, reinforcing understanding and engagement. This book will uncover how these solutions not only pave the way for increased profitability but also navigate risks with precision and elevate customer support to unparalleled heights. WHAT WILL YOU LEARN ● Delve into the world of Data Science, including Artificial Intelligence and Machine Learning, with a focus on their application within BFSI. ● Explore hands-on examples and step-by-step tutorials that provide practical solutions to real-world challenges faced by banking institutions. ● Develop skills in essential programming languages such as Python (fundamentals) and SQL (intermediate), crucial for effective data manipulation and analysis. ● Gain insights into how businesses adapt data-driven strategies to make informed decisions, leading to improved operational efficiency. ● Stay updated on emerging trends, technologies, and innovations shaping the future of data analytics in the BFSI industry. WHO IS THIS BOOK FOR? This book is tailored for professionals already engaged in or seeking roles within Data Analytics in the BFSI industry. Additionally, it serves as a strategic resource for business leaders and upper management, guiding them in shaping data platforms and products within their organizations. The book also serves as a starting point for individuals interested in the BFSI sector. Prior experience with coding tools such as Python, SQL, Power BI is beneficial but not required as it covers all dimensions from the basics. TABLE OF CONTENTS 1. Introduction to BFSI and Data Driven Banking 2. Introduction to Analytics and Data Science 3. Major Areas of Analytics Utilization 4. Understanding Infrastructures behind BFSI for Analytics 5. Data Governance and AI/ML Model Governance in BFSI 6. Domains of BFSI and team planning 7. Customer Demographic Analysis and Customer Segmentation 8. Text Mining and Social Media Analytics 9. Lead Generation Through Analytical Reasoning and Machine Learning 10. Cross Sell and Up Sell of Products through Machine Learning 11. Pricing Optimization 12. Data Envelopment Analysis 13. ATM Cash Forecasting 14. Unstructured Data Analytics 15. Fraud Modelling 16. Detection of Money Laundering and Analysis 17. Credit Risk and Stressed Assets 18. High Performance Architectures: On-Premises and Cloud 19. Growing Trends in the Data-Driven Future of BFSI

Book Machine Learning and Data Science Blueprints for Finance

Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Book Banking Analytics

    Book Details:
  • Author : George M Haylett
  • Publisher :
  • Release : 2021-03-31
  • ISBN : 9781838434007
  • Pages : 240 pages

Download or read book Banking Analytics written by George M Haylett and published by . This book was released on 2021-03-31 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need to understand customers - their behaviours, their transactions, their intentions - has never been more important. Such understanding is the primary advantage traditional banks possess against competition from new market entrants and disruptive innovation. Unlocking that understanding requires analytics. Whether you want to build an analytics team from scratch or extract more value from the resources you already have, this book will show you how to exploit analytics successfully-identifying the capabilities, the opportunities, and the business integration model. Banking Analytics: How to Survive and Thrive addresses these issues, plus: Outlines the analytics strategy and approach for CEOs and senior execs Lays out plentiful examples of applications that work for business managers Identifies where to find the maximum value from the analytics contribution Considers execution issues, including hiring, outsourcing, governance and control

Book Applied Insurance Analytics

Download or read book Applied Insurance Analytics written by Patricia L. Saporito and published by Pearson Education. This book was released on 2015 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is the insurance industry's single greatest asset. Yet many insurers radically underutilize their data assets, and are failing to fully leverage modern analytics. This makes them vulnerable to traditional and non-traditional competitors alike. Today, insurers largely apply analytics in important but stovepiped operational areas like underwriting, claims, marketing and risk management. By and large, they lack an enterprise analytic strategy -- or, if they have one, it is merely an architectural blueprint, inadequately business-driven or strategically aligned. Now, writing specifically for insurance industry professionals and leaders, Patricia Saporito uncovers immense new opportunities for driving competitive advantage from analytics -- and shows how to overcome the obstacles that stand in your way. Drawing on 25+ years of insurance industry experience, Saporito introduces proven best practices for developing, maturing, and profiting from your analytic capabilities. This user-friendly handbook advocates an enterprise strategy approach to analytics, presenting a common framework you can quickly adapt based on your unique business model and current capabilities. Saporito reviews common analytic applications by functional area, offering specific case studies and examples, and helping you build upon the analytics you're already doing. She presents data governance models and models proven to help you organize and deliver trusted data far more effectively. Finally, she provides tools and frameworks for improving the "analytic IQ" of your entire enterprise, from IT developers to business users.

Book Data Model Scorecard

    Book Details:
  • Author : Steve Hoberman
  • Publisher : Technics Publications
  • Release : 2015-11-01
  • ISBN : 1634620844
  • Pages : 124 pages

Download or read book Data Model Scorecard written by Steve Hoberman and published by Technics Publications. This book was released on 2015-11-01 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data models are the main medium used to communicate data requirements from business to IT, and within IT from analysts, modelers, and architects, to database designers and developers. Therefore it’s essential to get the data model right. But how do you determine right? That’s where the Data Model Scorecard® comes in. The Data Model Scorecard is a data model quality scoring tool containing ten categories aimed at improving the quality of your organization’s data models. Many of my consulting assignments are dedicated to applying the Data Model Scorecard to my client’s data models – I will show you how to apply the Scorecard in this book. This book, written for people who build, use, or review data models, contains the Data Model Scorecard template and an explanation along with many examples of each of the ten Scorecard categories. There are three sections: In Section I, Data Modeling and the Need for Validation, receive a short data modeling primer in Chapter 1, understand why it is important to get the data model right in Chapter 2, and learn about the Data Model Scorecard in Chapter 3. In Section II, Data Model Scorecard Categories, we will explain each of the ten categories of the Data Model Scorecard. There are ten chapters in this section, each chapter dedicated to a specific Scorecard category: · Chapter 4: Correctness · Chapter 5: Completeness · Chapter 6: Scheme · Chapter 7: Structure · Chapter 8: Abstraction · Chapter 9: Standards · Chapter 10: Readability · Chapter 11: Definitions · Chapter 12: Consistency · Chapter 13: Data In Section III, Validating Data Models, we will prepare for the model review (Chapter 14), cover tips to help during the model review (Chapter 15), and then review a data model based upon an actual project (Chapter 16).

Book Practical Artificial Intelligence and Blockchain

Download or read book Practical Artificial Intelligence and Blockchain written by Ganesh Prasad Kumble and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use AI and blockchain to build decentralized intelligent applications (DIApps) that overcome real-world challenges Key FeaturesUnderstand the fundamental concepts for converging artificial intelligence and blockchainApply your learnings to build apps using machine learning with Ethereum, IPFS, and MoiBitGet well-versed with the AI-blockchain ecosystem to develop your own DIAppsBook Description AI and blockchain are two emerging technologies catalyzing the pace of enterprise innovation. With this book, you’ll understand both technologies and converge them to solve real-world challenges. This AI blockchain book is divided into three sections. The first section covers the fundamentals of blockchain, AI, and affiliated technologies, where you’ll learn to differentiate between the various implementations of blockchains and AI with the help of examples. The second section takes you through domain-specific applications of AI and blockchain. You’ll understand the basics of decentralized databases and file systems and connect the dots between AI and blockchain before exploring products and solutions that use them together. You’ll then discover applications of AI techniques in crypto trading. In the third section, you’ll be introduced to the DIApp design pattern and compare it with the DApp design pattern. The book also highlights unique aspects of SDLC (software development lifecycle) when building a DIApp, shows you how to implement a sample contact tracing application, and delves into the future of AI with blockchain. By the end of this book, you’ll have developed the skills you need to converge AI and blockchain technologies to build smart solutions using the DIApp design pattern. What you will learnGet well-versed in blockchain basics and AI methodologiesUnderstand the significance of data collection and cleaning in AI modelingDiscover the application of analytics in cryptocurrency tradingGet to grips with open, permissioned, and private blockchainsExplore the DIApp design pattern and its merit in digital solutionsFind out how LSTM and ARIMA can be applied in crypto tradingUse the DIApp design pattern to build a sample contact tracing applicationGet started with building your own DIApps across various domainsWho this book is for This book is for blockchain and AI architects, developers, data scientists, data engineers, and evangelists who want to harness the power of artificial intelligence in blockchain applications. If you are looking for a blend of theoretical and practical use cases to understand how to implement smart cognitive insights into blockchain solutions, this book is what you need! Knowledge of machine learning and blockchain concepts is required.

Book Predictive Analytics  Data Mining and Big Data

Download or read book Predictive Analytics Data Mining and Big Data written by S. Finlay and published by Springer. This book was released on 2014-07-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.

Book Powering the Digital Economy  Opportunities and Risks of Artificial Intelligence in Finance

Download or read book Powering the Digital Economy Opportunities and Risks of Artificial Intelligence in Finance written by El Bachir Boukherouaa and published by International Monetary Fund. This book was released on 2021-10-22 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

Book Artificial Intelligence in Banking

Download or read book Artificial Intelligence in Banking written by Introbooks and published by . This book was released on 2020-04-07 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided the investors and customers with more innovative tools, new types of financial products and a new potential for growth.According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, "In a world focused on using AI in new ways, we're focused on using it wisely and responsibly."

Book Hands On Artificial Intelligence for Banking

Download or read book Hands On Artificial Intelligence for Banking written by Jeffrey Ng and published by Packt Publishing Ltd. This book was released on 2020-07-10 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into the world of real-world financial applications using deep learning, artificial intelligence, and production-grade data feeds and technology with Python Key FeaturesUnderstand how to obtain financial data via Quandl or internal systemsAutomate commercial banking using artificial intelligence and Python programsImplement various artificial intelligence models to make personal banking easyBook Description Remodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient, and accessible to clients, focusing on both the client- and server-side uses of AI. You’ll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you’ll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you’ll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you’ll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you’ll get to grips with some real-world AI considerations in the field of banking. By the end of this book, you’ll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI. What you will learnAutomate commercial bank pricing with reinforcement learningPerform technical analysis using convolutional layers in KerasUse natural language processing (NLP) for predicting market responses and visualizing them using graph databasesDeploy a robot advisor to manage your personal finances via Open Bank APISense market needs using sentiment analysis for algorithmic marketingExplore AI adoption in banking using practical examplesUnderstand how to obtain financial data from commercial, open, and internal sourcesWho this book is for This is one of the most useful artificial intelligence books for machine learning engineers, data engineers, and data scientists working in the finance industry who are looking to implement AI in their business applications. The book will also help entrepreneurs, venture capitalists, investment bankers, and wealth managers who want to understand the importance of AI in finance and banking and how it can help them solve different problems related to these domains. Prior experience in the financial markets or banking domain, and working knowledge of the Python programming language are a must.

Book Big Data Analytics in the Insurance Market

Download or read book Big Data Analytics in the Insurance Market written by Kiran Sood and published by Emerald Group Publishing. This book was released on 2022-07-18 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics in the Insurance Market is an industry-specific guide to creating operational effectiveness, managing risk, improving financials, and retaining customers. A must for people seeking to broaden their knowledge of big data concepts and their real-world applications, particularly in the field of insurance.

Book Data Management  Analytics and Innovation

Download or read book Data Management Analytics and Innovation written by Valentina Emilia Balas and published by Springer. This book was released on 2018-09-07 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume on Data Management, Analytics and Innovations presents the latest high-quality technical contributions and research results in the areas of data management and smart computing, big data management, artificial intelligence and data analytics along with advances in network technologies. It deals with the state-of-the-art topics and provides challenges and solutions for future development. Original, unpublished research work highlighting specific research domains from all viewpoints are contributed from scientists throughout the globe. This volume is mainly designed for professional audience, composed of researchers and practitioners in academia and industry.

Book Data Mining For Dummies

Download or read book Data Mining For Dummies written by Meta S. Brown and published by John Wiley & Sons. This book was released on 2014-09-04 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.

Book Business Intelligence Demystified

Download or read book Business Intelligence Demystified written by Anoop Kumar V K and published by BPB Publications. This book was released on 2021-09-25 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clear your doubts about Business Intelligence and start your new journey KEY FEATURES ● Includes successful methods and innovative ideas to achieve success with BI. ● Vendor-neutral, unbiased, and based on experience. ● Highlights practical challenges in BI journeys. ● Covers financial aspects along with technical aspects. ● Showcases multiple BI organization models and the structure of BI teams. DESCRIPTION The book demystifies misconceptions and misinformation about BI. It provides clarity to almost everything related to BI in a simplified and unbiased way. It covers topics right from the definition of BI, terms used in the BI definition, coinage of BI, details of the different main uses of BI, processes that support the main uses, side benefits, and the level of importance of BI, various types of BI based on various parameters, main phases in the BI journey and the challenges faced in each of the phases in the BI journey. It clarifies myths about self-service BI and real-time BI. The book covers the structure of a typical internal BI team, BI organizational models, and the main roles in BI. It also clarifies the doubts around roles in BI. It explores the different components that add to the cost of BI and explains how to calculate the total cost of the ownership of BI and ROI for BI. It covers several ideas, including unconventional ideas to achieve BI success and also learn about IBI. It explains the different types of BI architectures, commonly used technologies, tools, and concepts in BI and provides clarity about the boundary of BI w.r.t technologies, tools, and concepts. The book helps you lay a very strong foundation and provides the right perspective about BI. It enables you to start or restart your journey with BI. WHAT YOU WILL LEARN ● Builds a strong conceptual foundation in BI. ● Gives the right perspective and clarity on BI uses, challenges, and architectures. ● Enables you to make the right decisions on the BI structure, organization model, and budget. ● Explains which type of BI solution is required for your business. ● Applies successful BI ideas. WHO THIS BOOK IS FOR This book is a must-read for business managers, BI aspirants, CxOs, and all those who want to drive the business value with data-driven insights. TABLE OF CONTENTS 1. What is Business Intelligence? 2. Why do Businesses need BI? 3. Types of Business Intelligence 4. Challenges in Business Intelligence 5. Roles in Business Intelligence 6. Financials of Business Intelligence 7. Ideas for Success with BI 8. Introduction to IBI 9. BI Architectures 10. Demystify Tech, Tools, and Concepts in BI

Book Advances in Computational Intelligence and Informatics

Download or read book Advances in Computational Intelligence and Informatics written by Raghavendra Rao Chillarige and published by Springer Nature. This book was released on with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Data Analysis Workshop

Download or read book The Data Analysis Workshop written by Gururajan Govindan and published by Packt Publishing Ltd. This book was released on 2020-07-29 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to analyze data using Python models with the help of real-world use cases and guidance from industry experts Key FeaturesGet to grips with data analysis by studying use cases from different fieldsDevelop your critical thinking skills by following tried-and-true data analysisLearn how to use conclusions from data analyses to make better business decisionsBook Description Businesses today operate online and generate data almost continuously. While not all data in its raw form may seem useful, if processed and analyzed correctly, it can provide you with valuable hidden insights. The Data Analysis Workshop will help you learn how to discover these hidden patterns in your data, to analyze them, and leverage the results to help transform your business. The book begins by taking you through the use case of a bike rental shop. You'll be shown how to correlate data, plot histograms, and analyze temporal features. As you progress, you'll learn how to plot data for a hydraulic system using the Seaborn and Matplotlib libraries, and explore a variety of use cases that show you how to join and merge databases, prepare data for analysis, and handle imbalanced data. By the end of the book, you'll have learned different data analysis techniques, including hypothesis testing, correlation, and null-value imputation, and will have become a confident data analyst. What you will learnGet to grips with the fundamental concepts and conventions of data analysisUnderstand how different algorithms help you to analyze the data effectivelyDetermine the variation between groups of data using hypothesis testingVisualize your data correctly using appropriate plotting pointsUse correlation techniques to uncover the relationship between variablesFind hidden patterns in data using advanced techniques and strategiesWho this book is for The Data Analysis Workshop is for programmers who already know how to code in Python and want to use it to perform data analysis. If you are looking to gain practical experience in data science with Python, this book is for you.

Book Practical Natural Language Processing with Python

Download or read book Practical Natural Language Processing with Python written by Mathangi Sri and published by Apress. This book was released on 2020-12-01 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work with natural language tools and techniques to solve real-world problems. This book focuses on how natural language processing (NLP) is used in various industries. Each chapter describes the problem and solution strategy, then provides an intuitive explanation of how different algorithms work and a deeper dive on code and output in Python. Practical Natural Language Processing with Python follows a case study-based approach. Each chapter is devoted to an industry or a use case, where you address the real business problems in that industry and the various ways to solve them. You start with various types of text data before focusing on the customer service industry, the type of data available in that domain, and the common NLP problems encountered. Here you cover the bag-of-words model supervised learning technique as you try to solve the case studies. Similar depth is given to other use cases such as online reviews, bots, finance, and so on. As you cover the problems in these industries you’ll also cover sentiment analysis, named entity recognition, word2vec, word similarities, topic modeling, deep learning, and sequence to sequence modelling. By the end of the book, you will be able to handle all types of NLP problems independently. You will also be able to think in different ways to solve language problems. Code and techniques for all the problems are provided in the book. What You Will Learn Build an understanding of NLP problems in industry Gain the know-how to solve a typical NLP problem using language-based models and machine learning Discover the best methods to solve a business problem using NLP - the tried and tested ones Understand the business problems that are tough to solve Who This Book Is For Analytics and data science professionals who want to kick start NLP, and NLP professionals who want to get new ideas to solve the problems at hand.