EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Post Silicon Validation and Debug

Download or read book Post Silicon Validation and Debug written by Prabhat Mishra and published by Springer. This book was released on 2018-09-01 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive coverage of System-on-Chip (SoC) post-silicon validation and debug challenges and state-of-the-art solutions with contributions from SoC designers, academic researchers as well as SoC verification experts. The readers will get a clear understanding of the existing debug infrastructure and how they can be effectively utilized to verify and debug SoCs.

Book QED Post silicon Validation and Debug

Download or read book QED Post silicon Validation and Debug written by Hai Lin and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: During post-silicon validation and debug, manufactured integrated circuits (ICs) are tested in actual system environments to detect and fix design flaws (bugs). Traditional pre-silicon verification is inadequate; as a result, many critical bugs are detected only after ICs are manufactured (i.e., during post-silicon validation and debug). However, post-silicon validation and debug is challenging because traditional techniques are ad hoc (e.g., insertion of various Design for Debug structures based on various heuristics), and the associated costs are rising faster than design costs. These challenges are further magnified by the slowdown of silicon CMOS scaling, as ICs incorporate tremendous complexity to meet increasing demands for improvements in performance and energy efficiency. Examples include the use of multiple processor cores, co-processors, hardware accelerators, uncore components (defined as components in an SoC that are neither the processor cores nor the co-processors / accelerators; examples of uncore components include cache controllers, memory controllers, and interconnection networks), and power management units. This dissertation presents the Quick Error Detection (QED) technique to overcome post-silicon validation and debug challenges. QED is essential because long error detection latency, the time elapsed between the occurrence of an error caused by a bug and its manifestation as an observable failure, severely limits the effectiveness of existing post-silicon validation and debug approaches. Experimental results collected using several state-of-the-art commercial hardware platforms, as well as results obtained from simulations of various bug scenarios that occurred in commercial multi-core System-on-Chips (SoCs), demonstrate the effectiveness and practicality of QED: 1. QED improves error detection latencies by up to 9 orders of magnitude, from billions of clock cycles to very few clock cycles (generally fewer than 1,000 clock cycles for most bug scenarios). 2. QED enables up to 4-fold improvement in bug coverage (i.e., QED detects bugs that may be missed by traditional post-silicon validation approaches). 3. Symbolic Quick Error Detection (Symbolic QED) localizes difficult logic bugs automatically in a few hours (less than 7 hours for most bug scenarios), without requiring any additional hardware. Localizing a bug involves identifying a bug trace (defined as a sequence of inputs, e.g., instructions, that activates and detects the bug) and identifying the hardware design block where the bug is (possibly) located. This was demonstrated for an open-source multi-core SoC consisting of 500 millions transistors. In contrast, it might take days or weeks (or even months) of manual work, per bug, when traditional techniques are used. QED is effective for bugs inside processor cores, co-processors / software-programmable accelerators (which are components in an SoC that can be programmed using software to perform a specific set of functions, examples include graphic processing unit and digital signal processor), non-programmable hardware accelerators (which are components in a SoC that are designed to perform a pre-defined set of functions, but cannot be programmed using software, examples include accelerators for video or audio compression), and uncore components such as cache controllers, memory controllers, and interconnection networks. QED has been successfully used in industry during post-silicon validation and debug of a commercial multi-core SoC.

Book System on Chip Security

Download or read book System on Chip Security written by Farimah Farahmandi and published by Springer Nature. This book was released on 2019-11-22 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a wide variety of System-on-Chip (SoC) security threats and vulnerabilities, as well as their sources, in each stage of a design life cycle. The authors discuss a wide variety of state-of-the-art security verification and validation approaches such as formal methods and side-channel analysis, as well as simulation-based security and trust validation approaches. This book provides a comprehensive reference for system on chip designers and verification and validation engineers interested in verifying security and trust of heterogeneous SoCs.

Book Post Silicon and Runtime Verification for Modern Processors

Download or read book Post Silicon and Runtime Verification for Modern Processors written by Ilya Wagner and published by Springer Science & Business Media. This book was released on 2010-11-25 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to survey the state of the art and evolving directions in post-silicon and runtime verification. The authors start by giving an overview of the state of the art in verification, particularly current post-silicon methodologies in use in the industry, both for the domain of processor pipeline design and for memory subsystems. They then dive into the presentation of several new post-silicon verification solutions aimed at boosting the verification coverage of modern processors, dedicating several chapters to this topic. The presentation of runtime verification solutions follows a similar approach. This is an area of processor design that is still in its early stages of exploration and that holds the promise of accomplishing the ultimate goal of achieving complete correctness guarantees for microprocessor-based computation. The authors conclude the book with a look towards the future of late-stage verification and its growing role in the processor life-cycle.

Book Fundamentals of IP and SoC Security

Download or read book Fundamentals of IP and SoC Security written by Swarup Bhunia and published by Springer. This book was released on 2017-01-24 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about security in embedded systems and it provides an authoritative reference to all aspects of security in system-on-chip (SoC) designs. The authors discuss issues ranging from security requirements in SoC designs, definition of architectures and design choices to enforce and validate security policies, and trade-offs and conflicts involving security, functionality, and debug requirements. Coverage also includes case studies from the “trenches” of current industrial practice in design, implementation, and validation of security-critical embedded systems. Provides an authoritative reference and summary of the current state-of-the-art in security for embedded systems, hardware IPs and SoC designs; Takes a "cross-cutting" view of security that interacts with different design and validation components such as architecture, implementation, verification, and debug, each enforcing unique trade-offs; Includes high-level overview, detailed analysis on implementation, and relevant case studies on design/verification/debug issues related to IP/SoC security.

Book Trace Based Post Silicon Validation for VLSI Circuits

Download or read book Trace Based Post Silicon Validation for VLSI Circuits written by Xiao Liu and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book first provides a comprehensive coverage of state-of-the-art validation solutions based on real-time signal tracing to guarantee the correctness of VLSI circuits. The authors discuss several key challenges in post-silicon validation and provide automated solutions that are systematic and cost-effective. A series of automatic tracing solutions and innovative design for debug (DfD) techniques are described, including techniques for trace signal selection for enhancing visibility of functional errors, a multiplexed signal tracing strategy for improving functional error detection, a tracing solution for debugging electrical errors, an interconnection fabric for increasing data bandwidth and supporting multi-core debug, an interconnection fabric design and optimization technique to increase transfer flexibility and a DfD design and associated tracing solution for improving debug efficiency and expanding tracing window. The solutions presented in this book improve the validation quality of VLSI circuits, and ultimately enable the design and fabrication of reliable electronic devices.

Book Design for Testability  Debug and Reliability

Download or read book Design for Testability Debug and Reliability written by Sebastian Huhn and published by Springer Nature. This book was released on 2021-04-19 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces several novel approaches to pave the way for the next generation of integrated circuits, which can be successfully and reliably integrated, even in safety-critical applications. The authors describe new measures to address the rising challenges in the field of design for testability, debug, and reliability, as strictly required for state-of-the-art circuit designs. In particular, this book combines formal techniques, such as the Satisfiability (SAT) problem and the Bounded Model Checking (BMC), to address the arising challenges concerning the increase in test data volume, as well as test application time and the required reliability. All methods are discussed in detail and evaluated extensively, while considering industry-relevant benchmark candidates. All measures have been integrated into a common framework, which implements standardized software/hardware interfaces.

Book Network on Chip Security and Privacy

Download or read book Network on Chip Security and Privacy written by Prabhat Mishra and published by Springer Nature. This book was released on 2021-06-04 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of Network-on-Chip (NoC) security vulnerabilities and state-of-the-art countermeasures, with contributions from System-on-Chip (SoC) designers, academic researchers and hardware security experts. Readers will gain a clear understanding of the existing security solutions for on-chip communication architectures and how they can be utilized effectively to design secure and trustworthy systems.

Book Variance Validation for Post silicon Debugging in Network on Chip

Download or read book Variance Validation for Post silicon Debugging in Network on Chip written by Jiayong Liu and published by . This book was released on 2013 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since more complex components are integrated into a single chip and scale of chip goes far beyond, pre-silicon verification is getting hard to achieve full coverage at chip level and catch design bugs under physical conditions. As a complementary checking step, post-silicon validation has demonstrated its importance in verifying chip functionality. But still, the task of post-silicon validation is extremely difficult, especially for complex designs such as network on chip. In this thesis, a novel on-chip validation method based on the concept of variance validation is proposed to facilitate the process of post-silicon validation targeting the network on chip platform. Cores are paired and tagged as a functional core and a validating core in each pair. Variances are created for programs executed in each pair of cores. By comparing the outputs from each pair of cores, the method enables at-speed on-chip validation for core-based architectures and helps detect functional bugs after chip manufacturing. With little effort, the method can be extended to support reliable system design. Experiments are carried out and effectiveness of the proposed variance validation method is demonstrated by simulation results.

Book Principles of Verifiable RTL Design

Download or read book Principles of Verifiable RTL Design written by Lionel Bening and published by Springer Science & Business Media. This book was released on 2001-05-31 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Principles of Verifiable RTL Design offered a common sense method for simplifying and unifying assertion specification by creating a set of predefined specification modules that could be instantiated within the designer's RTL. Since the release of the first edition, an entire industry-wide initiative for assertion specification has emerged based on ideas presented in the first edition. This initiative, known as the Open Verification Library Initiative (www.verificationlib.org), provides an assertion interface standard that enables the design engineer to capture many interesting properties of the design and precludes the need to introduce new HDL constructs (i.e., extensions to Verilog are not required). Furthermore, this standard enables the design engineer to `specify once,' then target the same RTL assertion specification over multiple verification processes, such as traditional simulation, semi-formal and formal verification tools. The Open Verification Library Initiative is an empowering technology that will benefit design and verification engineers while providing unity to the EDA community (e.g., providers of testbench generation tools, traditional simulators, commercial assertion checking support tools, symbolic simulation, and semi-formal and formal verification tools). The second edition of Principles of Verifiable RTL Design expands the discussion of assertion specification by including a new chapter entitled `Coverage, Events and Assertions'. All assertions exampled are aligned with the Open Verification Library Initiative proposed standard. Furthermore, the second edition provides expanded discussions on the following topics: start-up verification; the place for 4-state simulation; race conditions; RTL-style-synthesizable RTL (unambiguous mapping to gates); more `bad stuff'. The goal of the second edition is to keep the topic current. Principles of Verifiable RTL Design, A Functional Coding Style Supporting Verification Processes, Second Edition tells you how you can write Verilog to describe chip designs at the RTL level in a manner that cooperates with verification processes. This cooperation can return an order of magnitude improvement in performance and capacity from tools such as simulation and equivalence checkers. It reduces the labor costs of coverage and formal model checking by facilitating communication between the design engineer and the verification engineer. It also orients the RTL style to provide more useful results from the overall verification process.

Book Reliability  Availability and Serviceability of Networks on Chip

Download or read book Reliability Availability and Serviceability of Networks on Chip written by Érika Cota and published by Springer Science & Business Media. This book was released on 2011-09-23 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of the issues related to the test, diagnosis and fault-tolerance of Network on Chip-based systems. It is the first book dedicated to the quality aspects of NoC-based systems and will serve as an invaluable reference to the problems, challenges, solutions, and trade-offs related to designing and implementing state-of-the-art, on-chip communication architectures.

Book On Chip Instrumentation

Download or read book On Chip Instrumentation written by Neal Stollon and published by Springer Science & Business Media. This book was released on 2010-12-06 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an in-depth overview of on chip instrumentation technologies and various approaches taken in adding instrumentation to System on Chip (ASIC, ASSP, FPGA, etc.) design that are collectively becoming known as Design for Debug (DfD). On chip instruments are hardware based blocks that are added to a design for the specific purpose and improving the visibility of internal or embedded portions of the design (specific instruction flow in a processor, bus transaction in an on chip bus as examples) to improve the analysis or optimization capabilities for a SoC. DfD is the methodology and infrastructure that surrounds the instrumentation. Coverage includes specific design examples and discussion of implementations and DfD tradeoffs in a decision to design or select instrumentation or SoC that include instrumentation. Although the focus will be on hardware implementations, software and tools will be discussed in some detail.

Book Debug Automation from Pre Silicon to Post Silicon

Download or read book Debug Automation from Pre Silicon to Post Silicon written by Mehdi Dehbashi and published by Springer. This book was released on 2014-09-25 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes automated debugging approaches for the bugs and the faults which appear in different abstraction levels of a hardware system. The authors employ a transaction-based debug approach to systems at the transaction-level, asserting the correct relation of transactions. The automated debug approach for design bugs finds the potential fault candidates at RTL and gate-level of a circuit. Debug techniques for logic bugs and synchronization bugs are demonstrated, enabling readers to localize the most difficult bugs. Debug automation for electrical faults (delay faults)finds the potentially failing speedpaths in a circuit at gate-level. The various debug approaches described achieve high diagnosis accuracy and reduce the debugging time, shortening the IC development cycle and increasing the productivity of designers. Describes a unified framework for debug automation used at both pre-silicon and post-silicon stages; Provides approaches for debug automation of a hardware system at different levels of abstraction, i.e., chip, gate-level, RTL and transaction level; Includes techniques for debug automation of design bugs and electrical faults, as well as an infrastructure to debug NoC-based multiprocessor SoCs.

Book Electronic Design Automation

Download or read book Electronic Design Automation written by Laung-Terng Wang and published by Morgan Kaufmann. This book was released on 2009-03-11 with total page 971 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides broad and comprehensive coverage of the entire EDA flow. EDA/VLSI practitioners and researchers in need of fluency in an "adjacent" field will find this an invaluable reference to the basic EDA concepts, principles, data structures, algorithms, and architectures for the design, verification, and test of VLSI circuits. Anyone who needs to learn the concepts, principles, data structures, algorithms, and architectures of the EDA flow will benefit from this book. - Covers complete spectrum of the EDA flow, from ESL design modeling to logic/test synthesis, verification, physical design, and test - helps EDA newcomers to get "up-and-running" quickly - Includes comprehensive coverage of EDA concepts, principles, data structures, algorithms, and architectures - helps all readers improve their VLSI design competence - Contains latest advancements not yet available in other books, including Test compression, ESL design modeling, large-scale floorplanning, placement, routing, synthesis of clock and power/ground networks - helps readers to design/develop testable chips or products - Includes industry best-practices wherever appropriate in most chapters - helps readers avoid costly mistakes

Book A Reconfigurable Post silicon Debug Infrastructure for Systems on chip

Download or read book A Reconfigurable Post silicon Debug Infrastructure for Systems on chip written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As the level of integrated circuit (IC) complexity continues to increase, the post-silicon validation stage is becoming a large component of the overall development cost. To address this, we propose a reconfigurable post-silicon debug infrastructure that enhances the post-silicon validation process by enabling the observation and control of signals that are internal to the manufactured device. The infrastructure is composed of dedicated programmable logic and programmable access networks. Our reconfigurable infrastructure enables not only the diagnoses of bugs; it also allows the detection and potential correction of errors in normal operation. In this thesis we describe the architecture, implementation and operation of our new infrastructure. Furthermore, we identify and address three key challenges arising from the implementation of this infrastructure. Our results demonstrate that it is possible to implement an effective reconfigurable post-silicon infrastructure that is able to observe and control circuits operating at full speed, with an area overhead of between 5% and 10% for many of our target ICs.

Book Formal Verification

    Book Details:
  • Author : Erik Seligman
  • Publisher : Elsevier
  • Release : 2023-05-27
  • ISBN : 0323956122
  • Pages : 426 pages

Download or read book Formal Verification written by Erik Seligman and published by Elsevier. This book was released on 2023-05-27 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Formal Verification: An Essential Toolkit for Modern VLSI Design, Second Edition presents practical approaches for design and validation, with hands-on advice to help working engineers integrate these techniques into their work. Formal Verification (FV) enables a designer to directly analyze and mathematically explore the quality or other aspects of a Register Transfer Level (RTL) design without using simulations. This can reduce time spent validating designs and more quickly reach a final design for manufacturing. Building on a basic knowledge of SystemVerilog, this book demystifies FV and presents the practical applications that are bringing it into mainstream design and validation processes. New sections cover advanced techniques, and a new chapter, The Road To Formal Signoff, emphasizes techniques used when replacing simulation work with Formal Verification. After reading this book, readers will be prepared to introduce FV in their organization to effectively deploy FV techniques that increase design and validation productivity.

Book VLSI Design Methodology Development

Download or read book VLSI Design Methodology Development written by Thomas Dillinger and published by Prentice Hall. This book was released on 2019-06-17 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complete, Modern Tutorial on Practical VLSI Chip Design, Validation, and Analysis As microelectronics engineers design complex chips using existing circuit libraries, they must ensure correct logical, physical, and electrical properties, and prepare for reliable foundry fabrication. VLSI Design Methodology Development focuses on the design and analysis steps needed to perform these tasks and successfully complete a modern chip design. Microprocessor design authority Tom Dillinger carefully introduces core concepts, and then guides engineers through modeling, functional design validation, design implementation, electrical analysis, and release to manufacturing. Writing from the engineer’s perspective, he covers underlying EDA tool algorithms, flows, criteria for assessing project status, and key tradeoffs and interdependencies. This fresh and accessible tutorial will be valuable to all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. Reflect complexity, cost, resources, and schedules in planning a chip design project Perform hierarchical design decomposition, floorplanning, and physical integration, addressing DFT, DFM, and DFY requirements Model functionality and behavior, validate designs, and verify formal equivalency Apply EDA tools for logic synthesis, placement, and routing Analyze timing, noise, power, and electrical issues Prepare for manufacturing release and bring-up, from mastering ECOs to qualification This guide is for all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. It is applicable to engineering teams undertaking new projects and migrating existing designs to new technologies.