EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Polymer Electrolytes for a Rechargeable Li Ion Battery

Download or read book Polymer Electrolytes for a Rechargeable Li Ion Battery written by and published by . This book was released on 1996 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li(subscript x)C/Li{sub y}Mn2O4 battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10−4 to 103 S/cm.

Book Polymer Electrolytes

    Book Details:
  • Author : Tan Winie
  • Publisher : John Wiley & Sons
  • Release : 2020-02-18
  • ISBN : 3527342001
  • Pages : 416 pages

Download or read book Polymer Electrolytes written by Tan Winie and published by John Wiley & Sons. This book was released on 2020-02-18 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices Polymer Electrolytes is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The authors ? noted experts on the topic ? discuss the various characterization methods, including impedance spectroscopy and thermal characterization. The authors also provide information on the myriad applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. Over the past three decades, researchers have been developing new polymer electrolytes and assessed their application potential in electrochemical and electrical power generation, storage, and conversion systems. As a result, many new polymer electrolytes have been found, characterized, and applied in electrochemical and electrical devices. This important book: -Reviews polymer electrolytes, a key component in electrochemical power sources, and thus benefits scientists in both academia and industry -Provides an interdisciplinary resource spanning electrochemistry, physical chemistry, and energy applications -Contains detailed and comprehensive information on characterization and applications of polymer electrolytes Written for materials scientists, physical chemists, solid state chemists, electrochemists, and chemists in industry professions, Polymer Electrolytes is an essential resource that explores the key characterization techniques of polymer electrolytes and reveals how they are applied in electrochemical devices.

Book Designing Electrolytes for Lithium Ion and Post Lithium Batteries

Download or read book Designing Electrolytes for Lithium Ion and Post Lithium Batteries written by Władysław Wieczorek and published by CRC Press. This book was released on 2021-06-23 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every electrochemical source of electric current is composed of two electrodes with an electrolyte in between. Since storage capacity depends predominantly on the composition and design of the electrodes, most research and development efforts have been focused on them. Considerably less attention has been paid to the electrolyte, a battery’s basic component. This book fills this gap and shines more light on the role of electrolytes in modern batteries. Today, limitations in lithium-ion batteries result from non-optimal properties of commercial electrolytes as well as scientific and engineering challenges related to novel electrolytes for improved lithium-ion as well as future post-lithium batteries.

Book Fast Ion Transport in Solids

    Book Details:
  • Author : B. Scrosati
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9401119163
  • Pages : 375 pages

Download or read book Fast Ion Transport in Solids written by B. Scrosati and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.

Book Polymer based Solid State Batteries

Download or read book Polymer based Solid State Batteries written by Daniel Brandell and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-07-19 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years has seen a tremendous growth in interest for solid state batteries based on polymer electrolytes, with advantages of higher safety, energy density, and ease of processing. The book explains which polymer properties guide the performance of the solid-state device, and how these properties are best determined. It is an excellent guide for students, newcomers and experts in the area of solid polymer electrolytes.

Book Polymer Electrolytes for Energy Storage Devices

Download or read book Polymer Electrolytes for Energy Storage Devices written by Prasanth Raghavan and published by CRC Press. This book was released on 2021-03-23 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Discusses a variety of energy storage systems and their workings and a detailed history of LIBs • Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes • Provides a comprehensive review of biopolymer electrolytes for energy storage applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.

Book Polymer and Ceramic Electrolytes for Energy Storage Devices  Two Volume Set

Download or read book Polymer and Ceramic Electrolytes for Energy Storage Devices Two Volume Set written by Prasanth Raghavan and published by CRC Press. This book was released on 2021-04-08 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer and Ceramic Electrolytes for Energy Storage Devices features two volumes that focus on the most recent technological and scientific accomplishments in polymer, ceramic, and specialty electrolytes and their applications in lithium-ion batteries. These volumes cover the fundamentals in a logical and clear manner for students, as well as researchers from different disciplines, to follow. The set includes the following volumes: Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. These volumes will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.

Book Rechargeable Battery Electrolytes

Download or read book Rechargeable Battery Electrolytes written by Jianmin Ma and published by Royal Society of Chemistry. This book was released on 2024-02-26 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ceramic and Specialty Electrolytes for Energy Storage Devices

Download or read book Ceramic and Specialty Electrolytes for Energy Storage Devices written by Prasanth Raghavan and published by CRC Press. This book was released on 2021-04-04 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.

Book Printed Batteries

Download or read book Printed Batteries written by Senentxu Lanceros-Méndez and published by John Wiley & Sons. This book was released on 2018-04-23 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.

Book Electrolytes for Lithium and Lithium Ion Batteries

Download or read book Electrolytes for Lithium and Lithium Ion Batteries written by T. Richard Jow and published by Springer. This book was released on 2014-05-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances. This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities. The book discusses in-depth the electrode-electrolyte interactions and interphasial chemistries that are key for the successful use of the electrolyte in practical devices. The Quantum Mechanical and Molecular Dynamical calculations that has proved to be so powerful in understanding and predicating behavior and properties of materials is also reviewed in this book. Electrolytes for Lithium and Lithium-ion Batteries is ideal for electrochemists, engineers, researchers interested in energy science and technology, material scientists, and physicists working on energy.

Book Polymer Electrolytes for Rechargeable Lithium sulfur Batteries

Download or read book Polymer Electrolytes for Rechargeable Lithium sulfur Batteries written by Kazem Jeddi and published by . This book was released on 2015 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: The lithium/sulfur (Li/S) battery is one of the most promising candidates for energy storage systems due to sulfur's high theoretical specific capacity at 1672 mAh g-1. This capacity is an order of magnitude higher than that of conventional electrodes and gives packaged Li/S cells an energy density of 400-600 W h kg-1, which is two or three times higher than that of current lithium-ion batteries. In addition, low cost, abundance and environmental friendliness of sulfur offer the opportunity to produce cheap, safe and commercializable high-energy density batteries. Despite these advantages, the practical application of Li/S batteries is still prevented by modest practical capacity, short cycle life and low Coulombic efficiency. These problems are mainly due to:(i) low electronic conductivity of sulfur, which leads to low sulfur utilization; (ii) generation of various forms of soluble intermediate lithium polysulfides during the electrochemical reactions, which dissolve in the electrolyte and induce the so-called shuttle effect causing irreversible loss of sulfur active material over repeat cycles; (iii) volume change of sulfur upon cycling, which leads to its mechanical rupture and, consequently, rapid degradation of the electrochemical performance. Since the early development of Li/S batteries by Abraham and Peled in the 1980s, a large number of studies have been done to understand the electrochemical mechanism of the Li/S cell and overcome its drawbacks. Studies have focused on increasing the electronic conductivity of sulfur by encapsulating sulfur with conducting materials such as porous carbon or conductive polymers, and suppressing polysulfide dissolution into the liquid electrolyte by coating with conductive polymers and oxides. It should be pointed out that most of the research efforts to improve the performance of Li/S batteries have focused on the cathode electrode. From the electrolyte perspective, the use of conventional liquid electrolytes deteriorates battery performance due to polysulfide dissolution and their shuttle between cathode and anode that leads to fast capacity degradation and low Coulombic efficiency. Moreover, the use of these liquid electrolytes raises safety concerns since they are prone to leakage and safety hazard. The motivation for this PhD work is to search for better electrolyte systems for Li/S batteries. We aim to study the effect of these electrolytes on the performance of Li/S batteries in conjunction with designed cathode materials using sulfur/conductive polymer and sulfur/carbon composites. In the first part of the thesis, we introduce gel polymer electrolytes (GPEs) into Li/S batteries with sulfur-polyacrylonitrile (S/PAN) composite cathodes. GPEs, consisting of solid matrices and embedded liquid electrolytes, may generally be defined as a polymer membrane that possesses ionic transport properties comparable to that of liquid electrolytes. In particular, for Li/S batteries, it is expected that the polymer membrane can act as a physical barrier, which can help control the dissolution of the polysulfide anions from the cathode and also prevent their migration to the anode. Specifically, the GPE was formed by trapping solutions of lithium hexafluorophosphate (LiPF6) in ethylene carbonate electrolyte in a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based polymer matrix. However, these Li/GPE/S cells suffer from performance fade after a few cycles due to the inability to retain liquid electrolyte in the GPE. A wide variety of methods were studied in order to improve the stability of the GPE and the performance of Li/S cells, including incorporation of layered nanoparticles, synthesis and addition of functionalized polymers and synthesis and addition of mesoporous nanoparticles. It was observed that incorporation of organically modified nanoparticles (OMMT) or functional polymer bearing inorganic domains reduces the pore size and improves the uniformity of pore size in the PVdF-HFP membrane, which prevents the release of electrolyte solution during cycling and suppresses the dissolution of polysulfides. The Li/S cell with the PVdF-HFP/OMMT nanocomposite electrolyte delivered an initial capacity of 1622 mAh g-1 and maintained a capacity of 500 mAh g-1 after 300 cycles. When the PVdF-HFP/functionalized PMMA electrolyte was used, the Li/S battery had an initial discharge capacity of 1600 mAh g-1 and a stable capacity of 1050 mAh g-1 after more than 100 cycles. Furthermore, utilization of the PVdF-HFP/functionalized PMMA/mesoporous silica composite electrolyte resulted in an initial discharge capacity of 1648 mAh g-1 and a stable discharge capacity of 1143 mAh g-1 after more than 100 cycles. The preparation procedures employed have the advantage of being reproducible, simple and inexpensive. In the second part of the thesis, gel polymer electrolyte systems were prepared and tested in Li/S batteries with sulfur/carbon (S/C) composite cathodes. Sulfur/carbon (S/C) composite cathodes are of great interest since they potentially offer higher loading of sulfur (>60 wt%). However, severe capacity fading and low cycling efficiency due to lithium polyslfide dissolution and diffusion result in poor cyclability. Therefore, it is difficult to find a suitable electrolyte for this category of sulfur-based composite cathodes. The high-energy and low-cost S/C composite cathode was synthesized through a facile one-step solution processing method, in which activated hardwood charcoal (AHC) powder was used as a scaffold to embed the sulfur active material and improve its electronic conductivity and its utilization in the battery cell. Results showed that normal gel polymer electrolytes could not effectively prevent polysulfide dissolution and performance fading. However, when a fluorinated liquid electrolyte containing1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether was employed, a significant improvement in the electrochemical performance of the Li/S cell was achieved. It was observed that such a low-cost Li/S cell can be operated for more than 300 cycles while still maintaining high specific capacity (600 mAh g-1) and 97% Coulombic efficiency. Further analyses confirmed that such an enhanced performance was due to the confinement of lithium polysulfides inside the cathode electrode that prevented their shuttling between cathode and anode. This minimized the severe active mass loss that leads to fast capacity degradation and low Coulombic efficiency. The electrochemical performance of this new Li/S battery configuration represents a significant improvement in comparison to that of conventional electrolytes under the same testing conditions.

Book Functional Polymers for Metal ion Batteries

Download or read book Functional Polymers for Metal ion Batteries written by Shanqing Zhang and published by John Wiley & Sons. This book was released on 2023-05-22 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Polymers for Metal-Ion Batteries Unique and useful book covering fundamental knowledge and practical applications of polymer materials in energy storage systems In Functional Polymers for Metal-Ion Batteries, the recent development and achievements of polymer-based materials are comprehensively analyzed in four directions, including electrode materials, binders, separators, and solid electrolytes, highlighting the working mechanisms, classification, design strategies, and practical applications of these polymer materials in mental-ion batteries. Specific sample topics covered in Functional Polymers for Metal-Ion Batteries include: Prominent advantages of various solid-state electrolytes, such as low flammability, easy processability, more tolerance to vibration, shock, and mechanical deformation Why and how functional polymers present opportunities to maximize energy density and pursue the sustainability of the battery industry How the application of functional polymers in metal-ion batteries helps enhance the high energy density of energy storage devices and reduce carbon footprint during production How development of functional separators could significantly lower the cost of battery manufacturing Providing a comprehensive understanding of the role of polymers in the whole configuration of metal-ion batteries from electrodes to electrolytes, Functional Polymers for Metal-Ion Batteries is an ideal resource for materials scientists, electrochemists, and polymer, solid state, and physical chemists who wish to understand the latest developments of this technology.

Book Non Aqueous Electrolytes for Lithium Batteries

Download or read book Non Aqueous Electrolytes for Lithium Batteries written by T. R. Jow and published by The Electrochemical Society. This book was released on 2009-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrolyte plays a vital role for the performance of rechargeable lithium batteries with a Li metal anode as well as Li-ion batteries. A better understanding of the elementary processes involved in the formation of the electrolyte/electrode interface and charge transfer kinetics in relation to solvent, salt, additive, and electrode material is crucial to the further optimization of Li and Li-ion batteries. This issue will focus on both the fundamental and applied aspects of the electrolyte for Li and Li-ion batteries. Topics include theoretical and experimental studies of structure/property relationships of electrolytes; development of new salts, solvents and additives; development of electrolytes for 5 V Li and Li-ion batteries; studies and approaches leading to the understanding of electrode/electrolyte interfacial phenomena and the charge transfer processes; electrolytes with enhanced non-flammability; electrolytes for wide temperature range operations; and cell performance improvement with respect to that of electrolyte materials.

Book Handbook Of Solid State Batteries  Second Edition

Download or read book Handbook Of Solid State Batteries Second Edition written by Nancy J Dudney and published by World Scientific. This book was released on 2015-07-09 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.

Book Ionic Liquid Based Gel Polymer Electrolytes for Application in Rechargeable Lithium Batteries

Download or read book Ionic Liquid Based Gel Polymer Electrolytes for Application in Rechargeable Lithium Batteries written by Rajendra K. Singh and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Depleting fossil fuels has put pressing need for the search of alternative energy resources. Solar and wind energy resources are being considered one of the viable solutions. However, these intermittent sources require efficient energy storage systems in terms of rechargeable Li batteries. In Li batteries, electrolyte is one of the most important components to determine the performance, as it conducts the ions between the electrodes. In battery, mostly liquid electrolyte is used as it shows high ionic conductivity and electrode/electrolyte contact which help to reduce the internal resistance. But these are not electrochemically very stable and raised some major problems such as reactivity with electrode, dissolution of electrode ions, leakage, volatility, fast Li dendrite growth, etc. Therefore, in order to improve its electrochemical performance, selection of electrolyte is an important issue. In the present study, ionic liquid (IL)-based polymer electrolyte is used over liquid electrolyte in which IL acts as a plasticizer and improves ionic conductivity and amorphicity. These electrolytes have high thermal and electrochemical stability, therefore, can be used in high voltage Li battery. Also, their mechanical stability helps to suppress Li dendrites growth. Therefore, polymer electrolytes can open a new way in the progression of battery application.

Book Zinc Batteries

Download or read book Zinc Batteries written by Rajender Boddula and published by John Wiley & Sons. This book was released on 2020-05-05 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Zinc batteries are an advantageous choice over lithium-based batteries, which have dominated the market for years in multiple areas, most specifically in electric vehicles and other battery-powered devices. Zinc is the fourth most abundant metal in the world, which is influential in its lower cost, making it a very attractive material for use in batteries. Zinc-based batteries have been around since the 1930s, but only now are they taking center stage in the energy, automotive, and other industries. Zinc Batteries: Basics, Developments, and Applicationsis intended as a discussion of the different zinc batteries for energy storage applications. It also provides an in-depth description of various energy storage materials for Zinc (Zn) batteries. This book is an invaluable reference guide for electro­chemists, chemical engineers, students, faculty, and R&D professionals in energy storage science, material science, and renewable energy.