EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plasma Technology for Biomedical Applications

Download or read book Plasma Technology for Biomedical Applications written by Emilio Martines and published by MDPI. This book was released on 2020-05-29 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is growing interest in the use of physical plasmas (ionized gases) for biomedical applications, especially in the framework of so-called “plasma medicine”, which exploits the action of low-power, atmospheric pressure plasmas for therapeutic purposes. Such plasmas are “cold plasmas”, in the sense that only electrons have a high temperature, whereas ions and the neutral gas particles are at or near room temperature. As a consequence, the “plasma flame” can be directly applied to living matter without appreciable thermal load. Reactive chemical species, charged particles, visible and UV radiation, and electric fields are interaction channels of the plasma with pathogens, cells, and tissues, which can trigger a variety of different responses. Possible applications include disinfection, wound healing, cancer treatment, non-thermal blood coagulation, just to mention some. The understanding of the mechanisms of plasma action on living matter requires a strongly interdisciplinary approach, with competencies ranging from plasma physics and technology to chemistry, to biology and finally to medicine. This book is a collection of work that explores recent advances in this field.

Book Plasma Technology for Biomedical Applications

Download or read book Plasma Technology for Biomedical Applications written by Emilio Martines and published by . This book was released on 2020 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is growing interest in the use of physical plasmas (ionized gases) for biomedical applications, especially in the framework of so-called “plasma medicine”, which exploits the action of low-power, atmospheric pressure plasmas for therapeutic purposes. Such plasmas are “cold plasmas”, in the sense that only electrons have a high temperature, whereas ions and the neutral gas particles are at or near room temperature. As a consequence, the “plasma flame” can be directly applied to living matter without appreciable thermal load. Reactive chemical species, charged particles, visible and UV radiation, and electric fields are interaction channels of the plasma with pathogens, cells, and tissues, which can trigger a variety of different responses. Possible applications include disinfection, wound healing, cancer treatment, non-thermal blood coagulation, just to mention some. The understanding of the mechanisms of plasma action on living matter requires a strongly interdisciplinary approach, with competencies ranging from plasma physics and technology to chemistry, to biology and finally to medicine. This book is a collection of work that explores recent advances in this field.

Book Non Thermal Plasma Technology for Polymeric Materials

Download or read book Non Thermal Plasma Technology for Polymeric Materials written by Sabu Thomas and published by Elsevier. This book was released on 2018-10-08 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials Reviews the state-of-the-art in plasma technology for polymer synthesis and processing Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering

Book Plasma Medical Science

    Book Details:
  • Author : Shinya Toyokuni
  • Publisher : Academic Press
  • Release : 2018-07-06
  • ISBN : 012815005X
  • Pages : 458 pages

Download or read book Plasma Medical Science written by Shinya Toyokuni and published by Academic Press. This book was released on 2018-07-06 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Medical Science describes the progress that has been made in the field over the past five years, illustrating what readers must know to be successful. As non-thermal, atmospheric pressure plasma has been applied for a wide variety of medical fields, including wound healing, blood coagulation, and cancer therapy, this book is a timely resource on the topics discussed. Provides a dedicated reference for this emerging topic Discusses the state-of-the-art developments in plasma technology Introduces topics of plasma biophysics and biochemistry that are required to understand the application of the technology for plasma medicine Brings together diverse experience in this field in one reference text Provides a roadmap for future developments in the area

Book Plasma Medicine

    Book Details:
  • Author : M. Laroussi
  • Publisher : Cambridge University Press
  • Release : 2012-05-24
  • ISBN : 1107006430
  • Pages : 363 pages

Download or read book Plasma Medicine written by M. Laroussi and published by Cambridge University Press. This book was released on 2012-05-24 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book dedicated exclusively to plasma medicine for graduate students and researchers in physics, engineering, biology, medicine and biochemistry.

Book Industrial Plasma Technology

Download or read book Industrial Plasma Technology written by Yoshinobu Kawai and published by John Wiley & Sons. This book was released on 2010-04-26 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clearly structured in five major sections on applications, this monograph covers such hot technologies as nanotechnology, solar cell technology, biomedical and clinical applications, and sustainability. Since the topic, applications and readers are highly interdisciplinary, the book bridges materials science, industrial chemistry, physics, and engineering -- making it a must-have for researchers in industry and academia, as well as those working in application-oriented plasma technology.

Book Cold Atmospheric Pressure Plasma Technology for Biomedical Application

Download or read book Cold Atmospheric Pressure Plasma Technology for Biomedical Application written by Heremba Bailung and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cold plasma generated in an open environment with a temperature nearly around room temperature has recently been a topic of great importance. It has unlocked the door of plasma application in a new direction: biomedical applications. Cold atmospheric pressure (CAP) plasma comprises various neutral and charged reactive species, UV radiations, electric current/fields etc., which have several impactful effects on biological matter. Some of the significant biological effects of CAP plasma are inactivation of microorganism, stimulation of cell proliferation and tissue regeneration, destruction of cells by initializing apoptosis etc. Although the detailed mechanism of action of plasma on biomaterials is still not completely understood, some basic principles are known. Studies have indicated that the reactive oxygen species and nitrogen species (ROS, RNS) play a crucial role in the observed biological effects. In this perspective, this chapter first provides a brief discussion on the fundamentals of CAP plasma and its generation methods. Then a discussion on the optical diagnostics methods to characterize the plasma is provided. Optical emission spectroscopy (OES) is used to identify the reactive species and to measure their relative concentration. Other important plasma parameters such as gas temperature, electron/excitation temperature and electron density measurement methods using OES have also been discussed. Then a discussion on the application of CAP plasma in biomedical field is provided. A thorough understanding of biochemical reaction mechanisms involving highly reactive plasma species will further improve and extend CAP plasma technology in biomedical applications.

Book Low Temperature Plasma Technology

Download or read book Low Temperature Plasma Technology written by Paul K. Chu and published by CRC Press. This book was released on 2013-07-15 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.

Book Plasma Technology for Hyperfunctional Surfaces

Download or read book Plasma Technology for Hyperfunctional Surfaces written by Hubert Rauscher and published by John Wiley & Sons. This book was released on 2010-04-16 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a project backed by the European Union, this is a must-have resource for researchers in industry and academia concerned with application-oriented plasma technology research. Clearly divided in three sections, the first part is dedicated to the fundamentals of plasma and offers information about scientific and theoretical plasma topics, plasma production, surface treatment process and characterization. The second section focuses on technological aspects and plasma process applications in textile, food packaging and biomedical sectors, while the final part is devoted to concerns about the environmental sustainability of plasma processes.

Book Comprehensive Clinical Plasma Medicine

Download or read book Comprehensive Clinical Plasma Medicine written by Hans-Robert Metelmann and published by Springer. This book was released on 2018-05-04 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art in clinical plasma medicine and outlines translational research strategies. Written by an international group of authors, it is divided into four parts. Part I is a detailed introduction and includes basic and recent research information on plasma sciences, plasma devices and mechanisms of biological plasma effects. Parts II and III provide valuable clinical insights f.e. into the treatment of superficial contaminations, ulcerations, wounds, treatment of cells in cancer, special indications like in heart surgery, dentistry, palliative treatment in head and neck cancer or the use of plasma in hygiene. Part IV offers information on how and where to qualify in plasma medicine and which companies produce and supply medical devices and is thus of particular interest to medical practitioners. This comprehensive book offers a sciences based practical to the clinical use of plasma and includes an extended selection of scientific medical data and translational literature.

Book Low Temperature Plasma for Biomedical Applications

Download or read book Low Temperature Plasma for Biomedical Applications written by Mounir Laroussi and published by Frontiers Media SA. This book was released on 2023-11-09 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-temperature plasmas (LTP) at atmospheric gas pressure play an increasing role in biomedical applications. The experimentally observed benefits of LTP for these applications are attributed to the controllable fluxes of chemically active species that can be produced in air at near room temperatures and delivered to bio-matter to induce desired effects. Recent research on the biomedical applications of LTP has generated new scientific knowledge regarding the interaction of plasma with soft matter including cells, tissues, seeds, and plants. The observed effects of LTP on biological cells are mediated by the plasma-produced reactive oxygen species (ROS) and reactive nitrogen species (RNS). These include hydroxyl, OH, atomic oxygen, O, singlet delta oxygen, O2(1Δ), superoxide, O2-, hydrogen peroxide, H2O2, and nitric oxide, NO. Some of these species are known to play important roles in biology serving as signaling molecules in living organisms. When they come in contact with biological cells these species interact with the lipids and proteins of the cell membrane, enter the cell and increase the intracellular ROS concentrations, which can lead to DNA damage and may compromise the integrity of other cell organelles. ROS and RNS can also trigger cell signaling pathways, which can lead to cellular death by apoptosis or necrosis. Other plasma-generated agents that could play biological roles are charged particles (electrons and ions), UV photons, and electric fields.

Book Applications of Plasma Technologies to Material Processing

Download or read book Applications of Plasma Technologies to Material Processing written by Giorgio Speranza and published by CRC Press. This book was released on 2019-04-10 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a survey of the latest research and developments in plasma technology. In an easy and comprehensive manner, it explores what plasma is and the technologies utilized to produce plasma. It then investigates the main applications and their benefits. Different from other books on the topic that focus on specific aspects of plasma technology, the intention is to provide an introduction to all aspects related to plasma technologies. This book will be an ideal resource for graduate students studying plasma technologies, in addition to researchers in physics, engineering, and materials science Features Accessible and easy to understand Provides simple yet exhaustive explanations of the foundations Explores the latest technologies and is filled with practical applications and case studies

Book Plasma Technologies for Textiles

Download or read book Plasma Technologies for Textiles written by Roshan Shishoo and published by Elsevier. This book was released on 2007-02-21 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma technologies present an environmentally-friendly and versatile way of treating textile materials in order to enhance a variety of properties such as wettability, liquid repellency, dyeability and coating adhesion. Recent advances made in commercially viable plasma systems have greatly increased the potential of using plasma technology in industrial textile finishing. This pioneering book provides an essential guide to both the technology and science related to plasmas and its practical applications in the textile industry. The first part of the book discusses the science and technology behind plasmas. Chapters give detailed and comprehensive descriptions on the characteristics of plasmas and methods of control and treatment in the processing of textiles. Both low pressure cold plasma and atmospheric pressure cold plasma processes are described as well as the diagnosis and control of plasma parameters in plasma generating reactors. A chapter is devoted to the use of plasma technology to achieve nanoscale treatment of textile surfaces. The second part of the book concentrates on specific applications of plasma technologies. Chapters cover treatments for water and oil repellency of textiles, engineering of biomedical textiles and woollen finishing techniques through the use of plasma technologies. Further chapters cover the modification of fibres for use in composites and the potential use of plasma technologies for the finishing of fabrics made of man made fibres. The final chapter in the book gives a comprehensive analysis of the surface chemical and physical characterisation of plasma treated fabrics. Written by a distinguished international team of experts, Plasma technologies for textiles is an invaluable reference for researchers, scientists and technologists alike. Summarises both the science and technology of plasma processing, and its practical applications Discusses how plasma technology improves textile properties such as wettability and liquid repelling An invaluable reference for researchers, scientists and technologists

Book Encyclopedia of Plasma Technology   Two Volume Set

Download or read book Encyclopedia of Plasma Technology Two Volume Set written by J. Leon Shohet and published by CRC Press. This book was released on 2016-12-12 with total page 3082 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]

Book Cold Plasma

    Book Details:
  • Author : MDPI
  • Publisher : MDPI
  • Release : 2021-01-20
  • ISBN : 3039366033
  • Pages : 184 pages

Download or read book Cold Plasma written by MDPI and published by MDPI. This book was released on 2021-01-20 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-equilibrium plasma (or low-temperature plasma, LTP) offers a chemically rich medium without the need for high power and elevated temperatures. This unique characteristic has made LTP very useful for various industrial and biomedical applications where thermal effects are not desirable. In addition, the relative simplicity of the design of sources capable of generating non-equilibrium plasma at atmospheric pressure makes LTP a very attractive technology that can accomplish the same or better results than much more complex and expensive approaches. This book describes various low-temperature plasma sources and some of their environmental and biomedical applications. The plasma sources covered in this book include low-temperature plasma jets which are novel devices that can launch low-power, low-temperature plasma plumes in ambient air. These plasma plumes can accurately and reliably be aimed at a surface to be treated or at a biological target such as cells and tissues. The application of these plasma jets in medicine, including in cancer therapy, are thoroughly discussed in this book. The contents of this book will appeal to engineers, medical experts, academics, and students who work with plasma technology.

Book Plasma Processing of Nanomaterials

Download or read book Plasma Processing of Nanomaterials written by R. Mohan Sankaran and published by CRC Press. This book was released on 2017-12-19 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.

Book Plasma Deposition  Treatment  and Etching of Polymers

Download or read book Plasma Deposition Treatment and Etching of Polymers written by Riccardo d'Agostino and published by Elsevier. This book was released on 2012-12-02 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Deposition, Treatment, and Etching of Polymers takes a broad look at the basic principles, the chemical processes, and the diagnostic procedures in the interaction of plasmas with polymer surfaces. This recent technology has yielded a large class of new materials offering many applications, including their use as coatings for chemical fibers and films. Additional applications include uses for the passivation of metals, the surface hardening of tools, increased biocompatibility of biomedical materials, chemical and physical sensors, and a variety of micro- and optoelectronic devices. Appeals to a broad range of industries from microelectronics to space technology Discusses a wide array of new uses for plasma polymers Provides a tutorial introduction to the field Surveys various classes of plasma polymers, their chemical and morphological properties, effects of plasma process parameters on the growth and structure of these synthetic materials, and techniques for characterization Interests scientists, engineers, and students alike