EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plasma Etching Processes for CMOS Devices Realization

Download or read book Plasma Etching Processes for CMOS Devices Realization written by Nicolas Posseme and published by Elsevier. This book was released on 2017-01-25 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma etching has long enabled the perpetuation of Moore's Law. Today, etch compensation helps to create devices that are smaller than 20 nm. But, with the constant downscaling in device dimensions and the emergence of complex 3D structures (like FinFet, Nanowire and stacked nanowire at longer term) and sub 20 nm devices, plasma etching requirements have become more and more stringent. Now more than ever, plasma etch technology is used to push the limits of semiconductor device fabrication into the nanoelectronics age. This will require improvement in plasma technology (plasma sources, chamber design, etc.), new chemistries (etch gases, flows, interactions with substrates, etc.) as well as a compatibility with new patterning techniques such as multiple patterning, EUV lithography, Direct Self Assembly, ebeam lithography or nanoimprint lithography. This book presents these etch challenges and associated solutions encountered throughout the years for transistor realization. Helps readers discover the master technology used to pattern complex structures involving various materials Explores the capabilities of cold plasmas to generate well controlled etched profiles and high etch selectivities between materials Teaches users how etch compensation helps to create devices that are smaller than 20 nm

Book Plasma Etching Processes for Interconnect Realization in VLSI

Download or read book Plasma Etching Processes for Interconnect Realization in VLSI written by Nicolas Posseme and published by Elsevier. This book was released on 2015-04-14 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of two books presenting the challenges and future prospects of plasma etching processes for microelectronics, reviewing the past, present and future issues of etching processes in order to improve the understanding of these issues through innovative solutions.This book focuses on back end of line (BEOL) for high performance device realization and presents an overview of all etch challenges for interconnect realization as well as the current etch solutions proposed in the semiconductor industry. The choice of copper/low-k interconnect architecture is one of the keys for integrated circuit performance, process manufacturability and scalability. Today, implementation of porous low-k material is mandatory in order to minimize signal propagation delay in interconnections. In this context, the traditional plasma process issues (plasma-induced damage, dimension and profile control, selectivity) and new emerging challenges (residue formation, dielectric wiggling) are critical points of research in order to control the reliability and reduce defects in interconnects. These issues and potential solutions are illustrated by the authors through different process architectures available in the semiconductor industry (metallic or organic hard mask strategies). Presents the difficulties encountered for interconnect realization in very large-scale integrated (VLSI) circuits Focused on plasma-dielectric surface interaction Helps you further reduce the dielectric constant for the future technological nodes

Book Plasma Etching Processes for Sub quarter Micron Devices

Download or read book Plasma Etching Processes for Sub quarter Micron Devices written by G. S. Mathad and published by The Electrochemical Society. This book was released on 2000 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Miniaturized Transistors

Download or read book Miniaturized Transistors written by Lado Filipovic and published by MDPI. This book was released on 2019-06-24 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Book Dry Etching Technology for Semiconductors

Download or read book Dry Etching Technology for Semiconductors written by Kazuo Nojiri and published by Springer. This book was released on 2014-10-25 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits. The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes. The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning etc.

Book Plasma Etching in Semiconductor Fabrication

Download or read book Plasma Etching in Semiconductor Fabrication written by Russ A. Morgan and published by North-Holland. This book was released on 1985-01-01 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardbound. This book is based on a post-graduate study carried out by the author on plasma etching mechanisms of semiconductor materials such as silicon, silicon dioxide, photoresist and aluminium films used in integrated circuit fabrication. In this book he gives an extensive review of the chemistry of dry etching, sustaining mechanisms and reactor architecture. He also describes a study made on the measurement of the electrical characteristics and ionization conditions existing in a planar reactor. In addition, practical problems such as photoresist mask erosion have been investigated and the reader will find the photoresist chemistry very useful. The book contains a great deal of practical information on plasma etching processes. The electronics industry is continually seeking ways to improve the miniaturization of devices, and this account of the author's findings should be a useful contribution to the work of miniaturization.

Book Development and Characterization of Plasma Etching Processes for the Dimensional Control and LWR Issues During High k Metal Gate Stack Patterning for 14FDSOI Technologies

Download or read book Development and Characterization of Plasma Etching Processes for the Dimensional Control and LWR Issues During High k Metal Gate Stack Patterning for 14FDSOI Technologies written by Onintza Ros Bengoetxea and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a transistor manufacturing process, patterning is one of the hardest stages to control. Along with downscaling, the specifications for a transistor manufacturing have tightened up to the nanometer scale. Extreme metrology and process control are required and Critical Dimension Uniformity (CDU) and Line Width Roughness (LWR) have become two of the most important parameters to control.So far, to meet the requirements of the latest CMOS technologies, post-lithography treatments such as plasma cure treatments have been introduced to increase photo-resist stability and to improve LWR prior to pattern transfer. However, conventional post-lithography treatments are no more efficient to address the specifications of14nm gate patterning where more complicated designs are involved.In this work, we have studied limitations of cure pretreatments in 2D gate integrations. In fact, the HBr plasma post-lithography treatment was identified as being responsible of a local pattern shifting that result in a loss of the device's electrical performance. Preliminary results show that, cure step removal helps to control pattern shifting but to the detriment of the LWR. Indeed, if no cure treatment is introduced in the gate patterning process flow, photoresist patterns undergo severe stress during the subsequent Si-ARC plasma etching in fluorocarbon based plasmas. In this work, the mechanisms that drive such resist degradation in fluorocarbon plasmas have been studied and improved SiARC etch process condition shave been proposed. Besides, we evaluate how the state-of-art gate etch process can be improved, by investigating the impact of each plasma etching step involved in the high-K metal gate patterning on both LWR and gate shifting. The goal of this study is to determine if the TiN metal gate roughness can be modified by changing the gate etch process conditions. Our research reveals that addition of N2 flash steps prevents from gate profile degradation and sidewall roughening. In revenge, the TiN microstructure as well as the HKMG etch process has no impact on the gate final roughness. The hard mask patterning process remains the main contributor for gate roughening.

Book Handbook for III V High Electron Mobility Transistor Technologies

Download or read book Handbook for III V High Electron Mobility Transistor Technologies written by D. Nirmal and published by CRC Press. This book was released on 2019-05-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focusses on III-V high electron mobility transistors (HEMTs) including basic physics, material used, fabrications details, modeling, simulation, and other important aspects. It initiates by describing principle of operation, material systems and material technologies followed by description of the structure, I-V characteristics, modeling of DC and RF parameters of AlGaN/GaN HEMTs. The book also provides information about source/drain engineering, gate engineering and channel engineering techniques used to improve the DC-RF and breakdown performance of HEMTs. Finally, the book also highlights the importance of metal oxide semiconductor high electron mobility transistors (MOS-HEMT). Key Features Combines III-As/P/N HEMTs with reliability and current status in single volume Includes AC/DC modelling and (sub)millimeter wave devices with reliability analysis Covers all theoretical and experimental aspects of HEMTs Discusses AlGaN/GaN transistors Presents DC, RF and breakdown characteristics of HEMTs on various material systems using graphs and plots

Book SiGe and Si Strained Layer Epitaxy for Silicon Heterostructure Devices

Download or read book SiGe and Si Strained Layer Epitaxy for Silicon Heterostructure Devices written by John D. Cressler and published by CRC Press. This book was released on 2017-12-19 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: What seems routine today was not always so. The field of Si-based heterostructures rests solidly on the shoulders of materials scientists and crystal growers, those purveyors of the semiconductor “black arts” associated with the deposition of pristine films of nanoscale dimensionality onto enormous Si wafers with near infinite precision. We can now grow near-defect free, nanoscale films of Si and SiGe strained-layer epitaxy compatible with conventional high-volume silicon integrated circuit manufacturing. SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices tells the materials side of the story and details the many advances in the Si-SiGe strained-layer epitaxy for device applications. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume defines and details the many advances in the Si/SiGe strained-layer epitaxy for device applications. Mining the talents of an international panel of experts, the book covers modern SiGe epitaxial growth techniques, epi defects and dopant diffusion in thin films, stability constraints, and electronic properties of SiGe, strained Si, and Si-C alloys. It includes appendices on topics such as the properties of Si and Ge, the generalized Moll-Ross relations, integral charge-control relations, and sample SiGe HBT compact model parameters.

Book Plasma Processing

Download or read book Plasma Processing written by R. G. Frieser and published by . This book was released on 1981 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Diagnostic of Plasma Etching Processes

Download or read book Modeling and Diagnostic of Plasma Etching Processes written by Philippe Schoenborn and published by . This book was released on 1987 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plasma Processes for Semiconductor Fabrication

Download or read book Plasma Processes for Semiconductor Fabrication written by W. N. G. Hitchon and published by Cambridge University Press. This book was released on 1999-01-28 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

Book Springer Handbook of Semiconductor Devices

Download or read book Springer Handbook of Semiconductor Devices written by Massimo Rudan and published by Springer Nature. This book was released on 2022-11-10 with total page 1680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.

Book Advanced Silicon Carbide Devices and Processing

Download or read book Advanced Silicon Carbide Devices and Processing written by Stephen Saddow and published by BoD – Books on Demand. This book was released on 2015-09-17 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the production of the first commercially available blue LED in the late 1980s, silicon carbide technology has grown into a billion-dollar industry world-wide in the area of solid-state lighting and power electronics. With this in mind we organized this book to bring to the attention of those well versed in SiC technology some new developments in the field with a particular emphasis on particularly promising technologies such as SiC-based solar cells and optoelectronics. We have balanced this with the more traditional subjects such as power electronics and some new developments in the improvement of the MOS system for SiC MOSFETS. Given the importance of advanced microsystems and sensors based on SiC, we also included a review on 3C-SiC for both microsystem and electronic applications.

Book Plasma Processing for VLSI

Download or read book Plasma Processing for VLSI written by Norman G. Einspruch and published by Academic Press. This book was released on 2014-12-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching. This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section, Deposition, discusses deposition techniques for VLSI such as sputtering metals for metallization and contacts, plasma-enhanced chemical vapor deposition of metals and suicides, and plasma enhanced chemical vapor deposition of dielectrics. The part on Lithography presents the high-resolution trilayer resist system, pulsed x-ray sources for submicrometer x-ray lithography, and high-intensity deep-UV sources. The last part, Etching, provides methods in etching, like ion-beam etching using reactive gases, low-pressure reactive ion etching, and the uses of inert-gas ion milling. The theory and mechanisms of plasma etching are described and a number of new device structures made possible by anisotropic etching are enumerated as well. Scientists, engineers, researchers, device designers, and systems architects will find the book useful.

Book Fast Scatterometric Measurement of Periodic Surface Structures Plasma etching Processes

Download or read book Fast Scatterometric Measurement of Periodic Surface Structures Plasma etching Processes written by Wolfgang Matthias Klesse and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: To satisfy the continuous demand of ever smaller feature sizes, plasma etching technologies in microelectronics processing enable the fabrication of device structures with dimensions in the nanometer range. In a typical plasma etching system a plasma phase of a selected etching gas is activated, thereby generating highly energetic and reactive gas species which ultimately etch the substrate surface. Such dry etching processes are highly complex and require careful adjustment of many process parameters to meet the high technology requirements on the structure geometry. In this context, real-time access of the structure's dimensions during the actual plasma process would be of great benefit by providing full dimension control and film integrity in real-time. In this paper, we evaluate the feasibility of reconstructing the etched dimensions with nanometer precision from reflectivity spectra of the etched surface, which are measured in real-time throughout the entire etch process. We develop and test a novel and fast reconstruction algorithm, using experimental reflection spectra taken about every second during the etch process of a periodic 2D model structure etched into a silicon substrate. Unfortunately, the numerical simulation of the reflectivity by Maxwell solvers is time consuming since it requires separate time-harmonic computations for each wavelength of the spectrum. To reduce the computing time, we propose that a library of spectra should be generated before the etching process. Each spectrum should correspond to a vector of geometry parameters s.t. the vector components scan the possible range of parameter values for the geometrical dimensions. We demonstrate that by replacing the numerically simulated spectra in the reconstruction algorithm by spectra interpolated from the library, it is possible to compute the geometry parameters in times less than a second. Finally, to also reduce memory size and computing time for the library, we reduce the scanning of the parameter values to a sparse grid.