EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plant Cell Wall Polysaccharides as Biofuels and Biomaterials

Download or read book Plant Cell Wall Polysaccharides as Biofuels and Biomaterials written by Ajaya K. Biswal and published by Frontiers Media SA. This book was released on 2022-08-05 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Polysaccharide Building Blocks

Download or read book Polysaccharide Building Blocks written by Youssef Habibi and published by John Wiley & Sons. This book was released on 2012-03-14 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an archival reference for the evolving field of biomaterials and their applications in society, focusing on their composition, properties, characterization, chemistry and applications in bioenergy, chemicals, and novel materials and biomaterials. It has broad appeal due to the recent heightened awareness around bioenergy and biomass as potential replacements for petroleum feedstocks. The book is divided into three parts: cellulose-based biomaterials, chitin and chitosan biomaterials, and hemicelluloses and other polysaccharides. Each chapter addresses a separate biomaterial, discussing its chemical, physical, and biological attributes, and hones in on each compound's intrinsic tunability for numerous chemical transformations. In the current quest for a "green" economy and resources, this book will help inspire scientists towards novel sources for chemicals, materials, and energy in the years to come.

Book Plant Cell Walls

    Book Details:
  • Author : Peter Albersheim
  • Publisher : Garland Science
  • Release : 2010-04-15
  • ISBN : 1136843582
  • Pages : 430 pages

Download or read book Plant Cell Walls written by Peter Albersheim and published by Garland Science. This book was released on 2010-04-15 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant cell walls are complex, dynamic cellular structures essential for plant growth, development, physiology and adaptation. Plant Cell Walls provides an in depth and diverse view of the microanatomy, biosynthesis and molecular physiology of these cellular structures, both in the life of the plant and in their use for bioproducts and biofuels. Plant Cell Walls is a textbook for upper-level undergraduates and graduate students, as well as a professional-level reference book. Over 400 drawings, micrographs, and photographs provide visual insight into the latest research, as well as the uses of plant cell walls in everyday life, and their applications in biotechnology. Illustrated panels concisely review research methods and tools; a list of key terms is given at the end of each chapter; and extensive references organized by concept headings provide readers with guidance for entry into plant cell wall literature. Cell wall material is of considerable importance to the biofuel, food, timber, and pulp and paper industries as well as being a major focus of research in plant growth and sustainability that are of central interest in present day agriculture and biotechnology. The production and use of plants for biofuel and bioproducts in a time of need for responsible global carbon use requires a deep understanding of the fundamental biology of plants and their cell walls. Such an understanding will lead to improved plant processes and materials, and help provide a sustainable resource for meeting the future bioenergy and bioproduct needs of humankind.

Book Biomass Modification  Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production

Download or read book Biomass Modification Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production written by Robert Henry and published by Frontiers Media SA. This book was released on 2016-06-09 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conversion of lignocellulosic biomass into renewable fuels and other commodities has provided an appealing alternative towards supplanting global dependence on fossil fuels. The suitability of multitudes of plants for deconstruction to useful precursor molecules and products is currently being evaluated. These studies have probed a variety of phenotypic traits, including cellulose, non-cellulosic polysaccharide, lignin, and lignin monomer composition, glucose and xylose production following enzymatic hydrolysis, and an assessment of lignin-carbohydrate and lignin-lignin linkages, to name a few. These quintessential traits can provide an assessment of biomass recalcitrance, enabling researchers to devise appropriate deconstruction strategies. Plants with high polysaccharide and lower lignin contents have been shown to breakdown to monomeric sugars more readily. Not all plants contain ideal proportions of the various cell wall constituents, however. The capabilities of biotechnology can alleviate this conundrum by tailoring the chemical composition of plants to be more favorable for conversion to sugars, fuels, etc. Increases in the total biomass yield, cellulose content, or conversion efficiency through, for example, a reduction in lignin content, are pathways being evaluated to genetically improve plants for use in manufacturing biofuels and bio-based chemicals. Although plants have been previously domesticated for food and fiber production, the collection of phenotypic traits prerequisite for biofuel production may necessitate new genetic breeding schemes. Given the plethora of potential plants available for exploration, rapid analytical methods are needed to more efficiently screen through the bulk of samples to hone in on which feedstocks contain the desired chemistry for subsequent conversion to valuable, renewable commodities. The standard methods for analyzing biomass and related intermediates and finished products are laborious, potentially toxic, and/or destructive. They may also necessitate a complex data analysis, significantly increasing the experimental time and add unwanted delays in process monitoring, where delays can incur in significant costs. Advances in thermochemical and spectroscopic techniques have enabled the screening of thousands of plants for different phenotypes, such as cell-wall cellulose, non-cellulosic polysaccharide, and lignin composition, lignin monomer composition, or monomeric sugar release. Some instrumental methods have been coupled with multivariate analysis, providing elegant chemometric predictive models enabling the accelerated identification of potential feedstocks. In addition to the use of high-throughput analytical methods for the characterization of feedstocks based on phenotypic metrics, rapid instrumental techniques have been developed for the real-time monitoring of diverse processes, such as the efficacy of a specific pretreatment strategy, or the formation of end products, such as biofuels and biomaterials. Real-time process monitoring techniques are needed for all stages of the feedstocks-to-biofuels conversion process in order to maximize efficiency and lower costs by monitoring and optimizing performance. These approaches allow researchers to adjust experimental conditions during, rather than at the conclusion, of a process, thereby decreasing overhead expenses. This Frontiers Research Topic explores options for the modification of biomass composition and the conversion of these feedstocks into to biofuels or biomaterials and the related innovations in methods for the analysis of the composition of plant biomass, and advances in assessing up- and downstream processes in real-time. Finally, a review of the computational models available for techno-economic modeling and lifecycle analysis will be presented.

Book Biogenesis Of Plant Cell Wall Polysaccharides

Download or read book Biogenesis Of Plant Cell Wall Polysaccharides written by Frank Loewus and published by Elsevier. This book was released on 2012-12-02 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biogenesis of Plant Cell Wall Polysaccharides contains the proceedings of a 1972 symposium on Biogenesis of Plant Cell Wall Polysaccharides held at the 164th National Meeting of the American Chemical Society, New York, New York. The symposium focuses on a broad range of interest from structural to functional aspects of cell wall polysaccharide biosynthesis in algae as well as in higher plants. Organized into 17 chapters, this book details the progress and understanding regarding the biosynthesis of cell wall components and the assembly of these components in the wall. It encompasses topics on cell wall polysaccharides, UDP-D-glucuronic acid pyrophosphorylase, and D-xylose. This reference also tackles the UDP-D-glucuronic acid, L-arabinose, D-apiose, and carbohydrate polymers. Furthermore, it explains other topics, such as on extensin, hydroxyproline-rich glycoprotein, cellulose, and polygalacturonic acid.

Book Polysaccharide Building Blocks

Download or read book Polysaccharide Building Blocks written by Youssef Habibi and published by Wiley. This book was released on 2012-03-20 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an archival reference for the evolving field of biomaterials and their applications in society, focusing on their composition, properties, characterization, chemistry and applications in bioenergy, chemicals, and novel materials and biomaterials. It has broad appeal due to the recent heightened awareness around bioenergy and biomass as potential replacements for petroleum feedstocks. The book is divided into three parts: cellulose-based biomaterials, chitin and chitosan biomaterials, and hemicelluloses and other polysaccharides. Each chapter addresses a separate biomaterial, discussing its chemical, physical, and biological attributes, and hones in on each compound's intrinsic tunability for numerous chemical transformations. In the current quest for a "green" economy and resources, this book will help inspire scientists towards novel sources for chemicals, materials, and energy in the years to come.

Book Biomass Recalcitrance

    Book Details:
  • Author : Michael Himmel
  • Publisher : Wiley-Blackwell
  • Release : 2008-06-23
  • ISBN :
  • Pages : 552 pages

Download or read book Biomass Recalcitrance written by Michael Himmel and published by Wiley-Blackwell. This book was released on 2008-06-23 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the connection between biomass structure, ultrastructure, and composition, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options."--Pub. desc.

Book Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels

Download or read book Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels written by RunCang Sun and published by Elsevier. This book was released on 2010-01-18 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials from renewable resources are receiving increased attention, as leading industries and manufacturers attempt to replace declining petrochemical-based feedstocks with products derived from natural biomass, such as cereal straws. Cereal straws are expected to play an important role in the shift toward a sustainable economy, and a basic knowledge of the composition and structure of cereal straw is the key to using it wisely. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels: Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose provides an introduction to straw chemistry. Topics discussed include the structure, ultrastructure, and chemical composition of straw; the structure and isolation of extractives from the straw; the three main components of straw: cellulose, hemicelluloses, and lignins; and chemical modifications of straw for industrial applications. This book will be helpful to scientists interested in the areas of natural resource management, environmental chemistry, plant chemistry, material science, polysaccharide chemistry, and lignin chemistry. It will also be of interest to academic and industrial scientists/researchers interested in novel applications of agricultural residues for industrial and/or recycling technologies. Provides the basics of straw composition and the structure of its cell walls Details the procedures required to fractionate straw components to produce chemical derivatives from straw cellulose, hemicelluloses, and lignins Elucidates new techniques for the production of biodegradable materials for the energy sector, chemical industry, and pulp and paper business

Book Nanoporous Catalysts for Biomass Conversion

Download or read book Nanoporous Catalysts for Biomass Conversion written by Feng-Shou Xiao and published by John Wiley & Sons. This book was released on 2017-09-05 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to the design, synthesis, characterization, and catalytic properties of nanoporous catalysts for the biomass conversion With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Topics covered include: Resins for biomass conversion Supported metal oxides/sulfides for biomass oxidation and hydrogenation Nanoporous metal oxides Ordered mesoporous silica-based catalysts Sulfonated carbon catalysts Porous polydivinylbenzene Aluminosilicate zeolites for bio-oil upgrading Rice straw Hydrogenation for sugar conversion Lignin depolymerization Timely, authoritative, and comprehensive, Nanoporous Catalysts for Biomass Conversion is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.

Book Current challenges in plant cell walls

Download or read book Current challenges in plant cell walls written by Jose M. Estevez and published by Frontiers E-books. This book was released on with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transforming Glycoscience

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2012-11-23
  • ISBN : 0309260833
  • Pages : 171 pages

Download or read book Transforming Glycoscience written by National Research Council and published by National Academies Press. This book was released on 2012-11-23 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.

Book Lignocellulosic Biorefining Technologies

Download or read book Lignocellulosic Biorefining Technologies written by Avinash P. Ingle and published by John Wiley & Sons. This book was released on 2020-04-13 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text to the advances and development of novel technologies in the production of high-value products from economically viable raw materials Lignocellulosic Biorefining Technologiesis an essential guide to the most recent advances and developments of novel technologies in the production of various high-value products from economically viable raw materials. Written by a team of experts on the topic, the book covers important topics specifically on production of economical and sustainable products such as various biofuels, organic acids, enzymes, biopigments, biosurfactants, etc. The book highlights the important aspects of lignocellulosic biorefining including structure, function, and chemical composition of the plant cell wall and reviews the details about the various components present in the lignocellulosic biomass and their characterizations. The authors explore the various approaches available for processing lignocellulosic biomass into second generation sugars and focus on the possibilities of utilization of lignocellulosic feedstocks for the production of biofuels and biochemicals. Each chapter includes a range of clear, informative tables and figures, and contains relevant references of published articles. This important text: Provides cutting-edge information on the recent developments in lignocellulose biorefinery Reviews production of various economically important and sustainable products, such as biofuels, organic acids, biopigments, and biosurfactants Highlights several broad-ranging areas of recent advances in the utilization of a variety of lignocellulosic feedstocks Provides a valuable, authoritative reference for anyone interested in the topic Written for post-graduate students and researchers in disciplines such as biotechnology, bioengineering, forestry, agriculture, and chemical industry, Lignocellulosic Biorefining Technologies is an authoritative and updated guide to the knowledge about various biorefining technologies.

Book Handbook of Biomass

    Book Details:
  • Author : Sabu Thomas
  • Publisher : Springer Nature
  • Release :
  • ISBN : 9819967279
  • Pages : 1554 pages

Download or read book Handbook of Biomass written by Sabu Thomas and published by Springer Nature. This book was released on with total page 1554 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plant Based Genetic Tools for Biofuels Production

Download or read book Plant Based Genetic Tools for Biofuels Production written by Daniela Defavari do Nascimento and published by Bentham Science Publishers. This book was released on 2017-06-12 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biofuels are currently used as a viable alternative energy source in several countries. Plant-Based Genetic Tools for Biofuels Production explains biotechnological techniques and concepts that are applied to increase biofuel yield from plants and algae. Chapters of the book cover a variety of topics: the basic research techniques (cell suspension, embryogenesis, protoplast fusion), plant genetics (plant DNA mutations, new plant breeding techniques, viral genetic vectors for heterologous gene expression, sub cellular proteomes), genomic resources and bioinformatics tools, plant species with bioenergy and biofuel potential, factors influencing biomass yield, advances in cultivation technologies, fermentation of different substrates for ethanol production, and microalgae biomass technologies. Readers will gain a thorough understanding of modern biofuel production. Plant-Based Genetic Tools for Biofuels Production is a suitable reference for students in biotechnology and bioinformatics programs as well as researchers interested in information about the basics of biofuel production.

Book Biomass for Bioenergy and Biomaterials

Download or read book Biomass for Bioenergy and Biomaterials written by Nidhi Adlakha and published by CRC Press. This book was released on 2021-10-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass for Bioenergy and Biomaterials presents an overview of recent studies developed specifically for lignocellulose-based production of biofuels, biochemicals, and functional materials. The emphasis is on using sustainable chemistry and engineering to develop innovative materials and fuels for practical applications. Technological strategies for the physical processing or biological conversion of biomass for material production are also presented. FEATURES Offers a comprehensive view of biomass processing, biofuel production, life cycle assessment, techno-economic analysis, and biochemical and biomaterial production Presents details of innovative strategies to pretreat biomass Helps readers understand the underlying metabolic pathways and identify the best engineering strategies for their native strain Highlights different strategies to make biomaterials from biomass Provides insight into the potential economic viability of the biomass-based process This book serves as an ideal reference for academic researchers and engineers working with renewable natural materials, the biorefining of lignocellulose, and biofuels. It can also be used as a comprehensive reference source for university students in metabolic, chemical, and environmental engineering.

Book Metabolic Engineering

    Book Details:
  • Author : Sang Yup Lee
  • Publisher : John Wiley & Sons
  • Release : 2021-06-02
  • ISBN : 352782345X
  • Pages : 1075 pages

Download or read book Metabolic Engineering written by Sang Yup Lee and published by John Wiley & Sons. This book was released on 2021-06-02 with total page 1075 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.

Book Biofuels from Agricultural Wastes and Byproducts

Download or read book Biofuels from Agricultural Wastes and Byproducts written by Hans P. Blaschek and published by John Wiley & Sons. This book was released on 2010-09-07 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditional agriculture and emerging biofuels technology produce a number of wastes and by-products, ranging from corn fiber and glycerin to animal manure, that have the potential to serve as the basis for additional sources of bioenergy that includes both liquid biofuels and biogas. Biofuels from Agricultural Wastes and Byproducts is the first book to focus solely on the production of biofuels primarily from agricultural waste and by-products. The book is divided roughly into two sections. The first section looks at liquid biofuel production from agricultural byproducts, densification of agricultural residues, and the delivery from farm to processing plant of waste and byproducts for use in biofuel production. The second section focuses on anaerobic digestion of food and animal wastes, microbial diversity, molecular and biochemical aspects of methanogensis. Together these sections solidify Biofuels from Agricultural Wastes and Byproducts as a definitive source of information on the use of agricultural waste and by-products in biofuel production.