EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Planar Laser Induced Fluorescence System for High Pressure Combustion Facility

Download or read book Planar Laser Induced Fluorescence System for High Pressure Combustion Facility written by and published by . This book was released on 1999 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report covers the expenditure of DURIP grant for the design fabrication and assembly of a state-of-the-art planar laser-induced fluorescent (PLIF) instrumentation system. The equipment will be used to acquire time-accurate and spatially resolved species concentrations of OH and NO in a combustor test rig operating at flow rates as high as 1 kgm/s and up to four atmospheres. Successful initial results have been obtained for methane-air flames at atmospheric pressure. This apparatus forms a significant addition to the Caltech program of research in combustion instabilities and applications of active control to combustor dynamics.

Book Oh Planar Laser Induced Fluorescence  Plif  Measurements for the Study of High Pressure Flames  An Evaluation of a New Laser and a New Camera System

Download or read book Oh Planar Laser Induced Fluorescence Plif Measurements for the Study of High Pressure Flames An Evaluation of a New Laser and a New Camera System written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2019-01-19 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planar laser induced fluorescence (PLIF) is used by the Combustion Branch at the NASA Glenn Research Center (NASA Glenn) to assess the characteristics of the flowfield produced by aircraft fuel injectors. To improve and expand the capabilities of the PLIF system new equipment was installed. The new capabilities of the modified PLIF system are assessed by collecting OH PLIF in a methane/air flame produced by a flat flame burner. Specifically, the modifications characterized are the addition of an injection seeder to a Nd: YAG laser pumping an optical parametric oscillator (OPO) and the use of a new camera with an interline CCD. OH fluorescence results using the injection seeded OPO laser are compared to results using a Nd: YAG pumped dye laser with ultraviolet extender (UVX). Best settings of the new camera for maximum detection of PLIF signal are reported for the controller gain and microchannel plate (MCP) bracket pulsing. Results are also reported from tests of the Dual Image Feature (DIF) mode of the new camera which allows image pairs to be acquired in rapid succession. This allows acquisition of a PLIF image and a background signal almost simultaneously. Saturation effects in the new camera were also investigated and are reported. Tedder, Sarah and Hicks, Yolanda Glenn Research Center NASA/TM-2012-217614, E-182

Book Oh Planar Laser Induced Fluorescence Measurements for the Study of High Pressure Flames

Download or read book Oh Planar Laser Induced Fluorescence Measurements for the Study of High Pressure Flames written by Nasa Technical Reports Server (Ntrs) and published by BiblioGov. This book was released on 2013-07 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planar laser induced fluorescence (PLIF) is used by the Combustion Branch at the NASA Glenn Research Center (NASA Glenn) to assess the characteristics of the flowfield produced by aircraft fuel injectors. To improve and expand the capabilities of the PLIF system new equipment was installed. The new capabilities of the modified PLIF system are assessed by collecting OH PLIF in a methane/air flame produced by a flat flame burner. Specifically, the modifications characterized are the addition of an injection seeder to a Nd: YAG laser pumping an optical parametric oscillator (OPO) and the use of a new camera with an interline CCD. OH fluorescence results using the injection seeded OPO laser are compared to results using a Nd: YAG pumped dye laser with ultraviolet extender (UVX). Best settings of the new camera for maximum detection of PLIF signal are reported for the controller gain and microchannel plate (MCP) bracket pulsing. Results are also reported from tests of the Dual Image Feature (DIF) mode of the new camera which allows image pairs to be acquired in rapid succession. This allows acquisition of a PLIF image and a background signal almost simultaneously. Saturation effects in the new camera were also investigated and are reporte

Book Quantitative Plif Imaging in High Pressure Combustion

Download or read book Quantitative Plif Imaging in High Pressure Combustion written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2018-11-06 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the final report for a research project aimed at developing planar laser-induced fluorescence (PLIF) techniques for quantitative 2-D species imaging in fuel-lean, high-pressure combustion gases, relevant to modem aircraft gas turbine combustors. The program involved both theory and experiment. The theoretical activity led to spectroscopic models that allow calculation of the laser-induced fluorescence produced in OH, NO and 02 for arbitrary excitation wavelength, pressure, temperature, gas mixture and laser linewidth. These spectroscopic models incorporate new information on line- broadening, energy transfer and electronic quench rates. Extensive calculations have been made with these models in order to identify optimum excitation strategies, particularly for detecting low levels (ppm) of NO in the presence of large 02 mole fractions (10% is typical for the fuel-lean combustion of interest). A promising new measurement concept has emerged from these calculations, namely that excitation at specific wavelengths, together with detection of fluorescence in multiple spectral bands, promises to enable simultaneous detection of both NO (at ppm levels) and 02 or possibly NO, 02 and temperature. Calculations have been made to evaluate the expected performance of such a diagnostic for a variety of conditions and choices of excitation and detection wavelengths. The experimental effort began with assembly of a new high-pressure combustor to provide controlled high-temperature and high-pressure combustion products. The non-premixed burner enables access to postflame gases at high temperatures (to 2000 K) and high pressures (to 13 atm), and a range of fuel-air equivalence ratios. The chamber also allowed use of a sampling probe, for chemiluminescent detection of NO/NO2, and thermocouples for measurement of gas temperature. Experiments were conducted to confirm the spectroscopic models for OH, NO and 02. Hanson, R. K. Glenn Research Center...

Book Laser Diagnostics for High Pressure Combustion

Download or read book Laser Diagnostics for High Pressure Combustion written by David Escofet-Martin and published by . This book was released on 2017 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser diagnostics have been a staple for experimental combustion research as a modern tool to evaluate high temperature reacting flow environments and to contribute to the fundamental knowledge needed for improving our current combustion systems in a non-intrusive way; they also represent an essential tool for validating computational models. High pressure diagnostics are of particular importance due to the fact that the majority of practical combustion systems operate at high pressure, involving increased challenges in the measurements. The current work examines a variety of linear and non-linear light/matter interaction processes (Raman, fluorescence, and coherent anti-Stokes Raman spectroscopy or CARS) with the goal of measuring the temperature, pressure, and spatial distribution of important reacting flow species. The specific techniques involving OH planar laser induced fluorescence (PLIF), two-line OH PLIF thermometry, two-photon CO PLIF, nanosecond vibrational CARS and hybrid femtosecond/picosecond rotational CARS are all demonstrated at atmospheric pressure using a non-premixed coflow impinging jet as a study flame and examined in detail under high pressure conditions (up to 12 bar) as a coflow flame and in a calibration high pressure vessel; the implications of pressure are discussed in detail in the linear and non-linear techniques. The high pressure experimental data set shows soot laser induced incandescence (LII) as a source of interference for high pressure LIF in non-premixed flames, good agreement with 3 different chemical mechanisms, in particular at high pressure, between an OpenFOAM simulated fluorescence and the experimental pressure dependent data regarding both the spatial distribution of the OH molecule and the overall number of $OH$ molecules interacting with the excitation source. Chirp is identified as a critical parameter when using a second harmonic bandwidth compressor in the hybrid fs/ps CARS configuration, and the chirped CARS signal depends strongly on probe delay in N2 experiments. High quality high pressure data can be achieved once chirp influence has been quantified accurately. Together the combination of diagnostics studied provide insights into high pressure laser diagnostics challenges beyond what is currently available.

Book Tracer based Planar Laser induced Fluorescence Diagnostics

Download or read book Tracer based Planar Laser induced Fluorescence Diagnostics written by Brian Ho-yin Cheung and published by Stanford University. This book was released on 2011 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two advances to tracer-based planar laser-induced fluorescence (PLIF) diagnostics are presented in this work. The first improvement is the development of a 3-pentanone fluorescence quantum yield (FQY) database and model for a wide range of conditions in support of quantitative PLIF diagnostics. In addition, this work presents a sensitive, time-resolved tracer-based PLIF diagnostic, accomplished by using a continuous-wave (CW) laser with the high-FQY tracer toluene. Because of its ease of use and desirable photophysical properties, PLIF diagnostics using 3-pentanone as a tracer are common, particularly for internal combustion engine (ICE) diagnostics. Thus, there is a need for 3-pentanone FQY measurements and modeling over a wide range of temperatures, pressures, and excitation wavelengths. For insight into the collisionless process in the FQY model, measurements were made in 3-pentanone vapor at low-pressures across a range of temperatures using a flowing cell. Laser excitation with 248, 266, 277, 308 nm wavelengths were utilized, and Rayleigh scattering of the laser beam was used to calibrate the optical efficiency of the collection optics and detector. This low-pressure data allows calculation of the 3-pentanone fluorescence rate and non-radiative de-excitation rate in the fluorescence model. The vibrational relaxation cascade parameter for 3-pentanone collisions was also determined. Measurements of 3-pentanone FQY were also made over a range of temperatures and pressures relevant to diagnostic applications, and, in particular, combined high-temperature and high-pressure conditions applicable to internal combustion engines (ICE). These data were collected in a custom-built optical cell capable of simultaneous high-pressure and high-temperature conditions. The behavior of the FQY in nitrogen for temperatures up to 745 K and in air up to 570 K was examined for pressures from 1 to 25 bar. These data were used to further optimize the parameters in the FQY model representing collisional processes. The large quantity of data with 308 nm excitation allowed optimization of the nitrogen quenching rate, and data in air were used to optimize the oxygen quenching rate. These data were also used to optimize the vibrational relaxation parameters for nitrogen and oxygen. The model with the updated parameters is consistent with the data collected in the current work, as well as with fluorescence measurements made in optical ICEs up to 1100 K and 28 bar. Another area of tracer-based PLIF diagnostics development is time-resolved imaging. Because PLIF diagnostics are often performed using pulsed lasers, the time resolution of measurements is limited to the pulse rate of laser. Use of a high-powered visible laser with an off-the-shelf cavity frequency doubler is shown to produce a moderate-power CW beam in the ultraviolet wavelength regime. Application of this CW source to excite toluene, a high-FQY tracer, yields a sensitive, time-resolved tracer-based PLIF diagnostic. Fluctuation detection limits for tracer mole fraction were investigated by applying the diagnostic to an atmospheric temperature and pressure nitrogen jet seeded with 4% toluene, and detection limits of better than 1% of the maximum toluene mole fraction were achieved for detection of fluorescence signal at a point, along a line, and over a plane. The diagnostic was also demonstrated on a turbulent jet for line and planar detection and demonstrated the potential for toluene time-resolved PLIF diagnostics with CW lasers.

Book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows

Download or read book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows written by Ji Hyung Yoo and published by Stanford University. This book was released on 2011 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis was motivated by the need to better understand the temperature distribution in shock tube flows, especially in the near-wall flow regions. Two main ideas in planar laser-induced fluorescence (PLIF) diagnostics are explored in this thesis. The first topic is the development of a single-shot PLIF diagnostic technique for quantitative temperature distribution measurement in shock tube flow fields. PLIF is a non-intrusive, laser-based diagnostic technique capable of instantaneously imaging key flow features, such as temperature, pressure, density, and species concentration, by measuring fluorescence signal intensity from laser-excited tracer species. This study performed a comprehensive comparison of florescence tracers and excitation wavelengths to determine the optimal combination for PLIF imaging in shock tube flow applications. Excitation of toluene at 248nm wavelength was determined to be the optimal strategy due to the resulting high temperature sensitivity and fluorescence signal level, compared to other ketone and aromatic tracers at other excitation wavelengths. Sub-atmospheric toluene fluorescence yield data was measured to augment the existing photophysical data necessary for this diagnostic technique. In addition, a new imaging test section was built to allow PLIF imaging in all regions of the shock tube test section, including immediately adjacent to the side and end walls. The signal-to-noise (SNR) and spatial resolution of the PLIF images were optimized using statistical analysis. Temperature field measurements were made with the PLIF diagnostic technique across normal incident and reflected shocks in the shock tube core flow. The resulting images show uniform spatial distribution, and good agreement with conditions calculated from the normal shock jump equations. Temperature measurement uncertainty is about 3.6% at 800K. The diagnostic was also applied to image flow over a wedge. The resulting images capture all the flow features predicted by numerical simulations. The second topic is the development of a quantitative near-wall diagnostic using tracer-based PLIF imaging. Side wall thermal boundary layers and end wall thermal layers are imaged to study the temperature distribution present under constant pressure conditions. The diagnostic technique validated in the shock tube core flow region was further optimized to improve near-wall image quality. The optimization process considered various wall materials, laser sheet orientations, camera collection angles, and optical components to find the configuration that provides the best images. The resulting images have increased resolution (15[Mu]m) and are able to resolve very thin non-uniform near-wall temperature layers (down to 60[Mu]m from the surface). The temperature field and thickness measurements of near-wall shock tube flows under various shock conditions and test gases showed good agreement with boundary layer theory. To conclude this thesis, new applications and future improvements to the developed PLIF diagnostic technique are discussed. These suggested refinements can provide an even more robust and versatile PLIF imaging technique capable of measuring a wider range of flow conditions near walls.

Book Experimental Assessment and Enhancement of Planar Laser Induced Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame

Download or read book Experimental Assessment and Enhancement of Planar Laser Induced Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame written by and published by . This book was released on 1997 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of Planar Laser Induced Fluorescence for Fuel

Download or read book Development of Planar Laser Induced Fluorescence for Fuel written by D. A. Greenhalgh and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: