EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows

Download or read book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows written by Ji Hyung Yoo and published by Stanford University. This book was released on 2011 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis was motivated by the need to better understand the temperature distribution in shock tube flows, especially in the near-wall flow regions. Two main ideas in planar laser-induced fluorescence (PLIF) diagnostics are explored in this thesis. The first topic is the development of a single-shot PLIF diagnostic technique for quantitative temperature distribution measurement in shock tube flow fields. PLIF is a non-intrusive, laser-based diagnostic technique capable of instantaneously imaging key flow features, such as temperature, pressure, density, and species concentration, by measuring fluorescence signal intensity from laser-excited tracer species. This study performed a comprehensive comparison of florescence tracers and excitation wavelengths to determine the optimal combination for PLIF imaging in shock tube flow applications. Excitation of toluene at 248nm wavelength was determined to be the optimal strategy due to the resulting high temperature sensitivity and fluorescence signal level, compared to other ketone and aromatic tracers at other excitation wavelengths. Sub-atmospheric toluene fluorescence yield data was measured to augment the existing photophysical data necessary for this diagnostic technique. In addition, a new imaging test section was built to allow PLIF imaging in all regions of the shock tube test section, including immediately adjacent to the side and end walls. The signal-to-noise (SNR) and spatial resolution of the PLIF images were optimized using statistical analysis. Temperature field measurements were made with the PLIF diagnostic technique across normal incident and reflected shocks in the shock tube core flow. The resulting images show uniform spatial distribution, and good agreement with conditions calculated from the normal shock jump equations. Temperature measurement uncertainty is about 3.6% at 800K. The diagnostic was also applied to image flow over a wedge. The resulting images capture all the flow features predicted by numerical simulations. The second topic is the development of a quantitative near-wall diagnostic using tracer-based PLIF imaging. Side wall thermal boundary layers and end wall thermal layers are imaged to study the temperature distribution present under constant pressure conditions. The diagnostic technique validated in the shock tube core flow region was further optimized to improve near-wall image quality. The optimization process considered various wall materials, laser sheet orientations, camera collection angles, and optical components to find the configuration that provides the best images. The resulting images have increased resolution (15[Mu]m) and are able to resolve very thin non-uniform near-wall temperature layers (down to 60[Mu]m from the surface). The temperature field and thickness measurements of near-wall shock tube flows under various shock conditions and test gases showed good agreement with boundary layer theory. To conclude this thesis, new applications and future improvements to the developed PLIF diagnostic technique are discussed. These suggested refinements can provide an even more robust and versatile PLIF imaging technique capable of measuring a wider range of flow conditions near walls.

Book Experimental Heat Transfer  Fluid Mechanics and Thermodynamics 1993

Download or read book Experimental Heat Transfer Fluid Mechanics and Thermodynamics 1993 written by M.D. Kelleher and published by Elsevier. This book was released on 2012-12-02 with total page 1002 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers contained in this volume reflect the ingenuity and originality of experimental work in the areas of fluid mechanics, heat transfer and thermodynamics. The contributors are drawn from 27 countries which indicates how well the worldwide scientific community is networked. The papers cover a broad spectrum from the experimental investigation of complex fundamental physical phenomena to the study of practical devices and applications. A uniform outline and method of presentation has been used for each paper.

Book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows

Download or read book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows written by Ji Hyung Yoo and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis was motivated by the need to better understand the temperature distribution in shock tube flows, especially in the near-wall flow regions. Two main ideas in planar laser-induced fluorescence (PLIF) diagnostics are explored in this thesis. The first topic is the development of a single-shot PLIF diagnostic technique for quantitative temperature distribution measurement in shock tube flow fields. PLIF is a non-intrusive, laser-based diagnostic technique capable of instantaneously imaging key flow features, such as temperature, pressure, density, and species concentration, by measuring fluorescence signal intensity from laser-excited tracer species. This study performed a comprehensive comparison of florescence tracers and excitation wavelengths to determine the optimal combination for PLIF imaging in shock tube flow applications. Excitation of toluene at 248nm wavelength was determined to be the optimal strategy due to the resulting high temperature sensitivity and fluorescence signal level, compared to other ketone and aromatic tracers at other excitation wavelengths. Sub-atmospheric toluene fluorescence yield data was measured to augment the existing photophysical data necessary for this diagnostic technique. In addition, a new imaging test section was built to allow PLIF imaging in all regions of the shock tube test section, including immediately adjacent to the side and end walls. The signal-to-noise (SNR) and spatial resolution of the PLIF images were optimized using statistical analysis. Temperature field measurements were made with the PLIF diagnostic technique across normal incident and reflected shocks in the shock tube core flow. The resulting images show uniform spatial distribution, and good agreement with conditions calculated from the normal shock jump equations. Temperature measurement uncertainty is about 3.6% at 800K. The diagnostic was also applied to image flow over a wedge. The resulting images capture all the flow features predicted by numerical simulations. The second topic is the development of a quantitative near-wall diagnostic using tracer-based PLIF imaging. Side wall thermal boundary layers and end wall thermal layers are imaged to study the temperature distribution present under constant pressure conditions. The diagnostic technique validated in the shock tube core flow region was further optimized to improve near-wall image quality. The optimization process considered various wall materials, laser sheet orientations, camera collection angles, and optical components to find the configuration that provides the best images. The resulting images have increased resolution (15[Mu]m) and are able to resolve very thin non-uniform near-wall temperature layers (down to 60[Mu]m from the surface). The temperature field and thickness measurements of near-wall shock tube flows under various shock conditions and test gases showed good agreement with boundary layer theory. To conclude this thesis, new applications and future improvements to the developed PLIF diagnostic technique are discussed. These suggested refinements can provide an even more robust and versatile PLIF imaging technique capable of measuring a wider range of flow conditions near walls.

Book The 1992 NASA Langley Measurement Technology Conference

Download or read book The 1992 NASA Langley Measurement Technology Conference written by Jag J. Singh and published by . This book was released on 1992 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Trends in Instrumentation for Hypersonic Research

Download or read book New Trends in Instrumentation for Hypersonic Research written by A. Boutier and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of the growing interest in hypersonic flows, the AGARD Fluid Dynamics Panel initiated a sub-working group on instrumentation for hypersonics in 1989. This sub-group, chaired by J. WENDT (VKI -Belgium), was composed of: A. BOUTIER (ONERA -France), K. BUTEFISCH (DLR -Germany), R. CATTOLICA (SANDIA Lab. -USA), V. CLINE (AEDC -USA), A. GIRARD (ONERA -France), R. McKENZIE (NASA Ames -USA), S. OCHELTREE (NASA Langley -USA) and G. SMEETS (ISL -Franco-German Inst.). As a result of several meetings, the idea came to organize this workshop, 27th April - 1st May 1992, on "New Trends in Instrumentation for Hypersonic Research", at Le Fauga-Mauzac ONERA center, in France, where the new hot-shot arc-heated facility F4, as well as a new conference building, were recently completed. This workshop has been organized in close connection with the AGARD FDP Symposium to be held in Torino 4 - 8 May 1992 on "Theoretical and Experimental Methods in Hypersonic Flows": the main conclusions and ideas expressed by the papers and during the discussions of this workshop are reported in session 7 and have been presented in Torino in a special Instrumentation session. As chairman of this workshop, I express many thanks to the Organizing Committee composed of Karl BUTEFISCH, Andre GIRARD, Stewart OCHELTREE and John WENDT for their very constructive help, leading to a meeting that was recognized to be very fruitful for all the participants.

Book Rarefied Gas Dynamics

Download or read book Rarefied Gas Dynamics written by Bernie D. Shizgal and published by AIAA. This book was released on 1994 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Tracer based Planar Laser induced Fluorescence Diagnostics

Download or read book Tracer based Planar Laser induced Fluorescence Diagnostics written by Brian Ho-yin Cheung and published by Stanford University. This book was released on 2011 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two advances to tracer-based planar laser-induced fluorescence (PLIF) diagnostics are presented in this work. The first improvement is the development of a 3-pentanone fluorescence quantum yield (FQY) database and model for a wide range of conditions in support of quantitative PLIF diagnostics. In addition, this work presents a sensitive, time-resolved tracer-based PLIF diagnostic, accomplished by using a continuous-wave (CW) laser with the high-FQY tracer toluene. Because of its ease of use and desirable photophysical properties, PLIF diagnostics using 3-pentanone as a tracer are common, particularly for internal combustion engine (ICE) diagnostics. Thus, there is a need for 3-pentanone FQY measurements and modeling over a wide range of temperatures, pressures, and excitation wavelengths. For insight into the collisionless process in the FQY model, measurements were made in 3-pentanone vapor at low-pressures across a range of temperatures using a flowing cell. Laser excitation with 248, 266, 277, 308 nm wavelengths were utilized, and Rayleigh scattering of the laser beam was used to calibrate the optical efficiency of the collection optics and detector. This low-pressure data allows calculation of the 3-pentanone fluorescence rate and non-radiative de-excitation rate in the fluorescence model. The vibrational relaxation cascade parameter for 3-pentanone collisions was also determined. Measurements of 3-pentanone FQY were also made over a range of temperatures and pressures relevant to diagnostic applications, and, in particular, combined high-temperature and high-pressure conditions applicable to internal combustion engines (ICE). These data were collected in a custom-built optical cell capable of simultaneous high-pressure and high-temperature conditions. The behavior of the FQY in nitrogen for temperatures up to 745 K and in air up to 570 K was examined for pressures from 1 to 25 bar. These data were used to further optimize the parameters in the FQY model representing collisional processes. The large quantity of data with 308 nm excitation allowed optimization of the nitrogen quenching rate, and data in air were used to optimize the oxygen quenching rate. These data were also used to optimize the vibrational relaxation parameters for nitrogen and oxygen. The model with the updated parameters is consistent with the data collected in the current work, as well as with fluorescence measurements made in optical ICEs up to 1100 K and 28 bar. Another area of tracer-based PLIF diagnostics development is time-resolved imaging. Because PLIF diagnostics are often performed using pulsed lasers, the time resolution of measurements is limited to the pulse rate of laser. Use of a high-powered visible laser with an off-the-shelf cavity frequency doubler is shown to produce a moderate-power CW beam in the ultraviolet wavelength regime. Application of this CW source to excite toluene, a high-FQY tracer, yields a sensitive, time-resolved tracer-based PLIF diagnostic. Fluctuation detection limits for tracer mole fraction were investigated by applying the diagnostic to an atmospheric temperature and pressure nitrogen jet seeded with 4% toluene, and detection limits of better than 1% of the maximum toluene mole fraction were achieved for detection of fluorescence signal at a point, along a line, and over a plane. The diagnostic was also demonstrated on a turbulent jet for line and planar detection and demonstrated the potential for toluene time-resolved PLIF diagnostics with CW lasers.

Book Instantaneous Velocity Field Imaging Instrument for Supersonic Reacting Flows

Download or read book Instantaneous Velocity Field Imaging Instrument for Supersonic Reacting Flows written by and published by . This book was released on 1993 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 30th Aerospace Sciences Meeting and Exhibit  92 0760   92 0809

Download or read book 30th Aerospace Sciences Meeting and Exhibit 92 0760 92 0809 written by and published by . This book was released on 1992 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book AIAA Journal

    Book Details:
  • Author : American Institute of Aeronautics and Astronautics
  • Publisher :
  • Release : 2006
  • ISBN :
  • Pages : 958 pages

Download or read book AIAA Journal written by American Institute of Aeronautics and Astronautics and published by . This book was released on 2006 with total page 958 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental and Theoretical Studies of Axisymmetric Free Jets

Download or read book Experimental and Theoretical Studies of Axisymmetric Free Jets written by and published by . This book was released on 1959 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some experimental and theoretical studies have been made of axisymmetric free jets exhausting from sonic and supersonic nozzles into still air and into supersonic streams with a view toward problems associated with propulsive jets and the investigation of these problems. For jets exhausting into still air, consideration is given to the effects of jet Mach number, nozzle divergence angle, and jet static-pressure ratio upon jet structure, jet wavelength, and the shape and curvature of the jet boundary. Studies of the effects of the ratio of specific heats of the jets are included as are observations pertaining to jet noise and jet simulation. For jets exhausting into supersonic streams, an attempt has been made to present primarily theoretical curves of the type that may be useful in evaluating certain jet interference effects and in formulating experimental studies. The primary variables considered are jet Mach number, free-stream Mach number, jet static-pressure ratio, ratio of specific heats of the jet, nozzle exit angle, and boattail angle. The simulation problem and the case of a hypothetical hypersonic vehicle are examined. A few experimental observations are included.

Book 35th Aerospace Sciences Meeting   Exhibit

Download or read book 35th Aerospace Sciences Meeting Exhibit written by and published by . This book was released on 1997 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1996 with total page 1012 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Two Dimensional Imaging Measurements in Supersonic Flows Using Laser Induced Fluorescence of Oxygen

Download or read book Two Dimensional Imaging Measurements in Supersonic Flows Using Laser Induced Fluorescence of Oxygen written by L. M. Cohen and published by . This book was released on 1987 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planar laser induced fluorescence of molecular oxygen in a supersonic jet of heated air is reported. A tunable, narrow-bandwidth ArF excimer laser was used to excite a rovibronic transition of oxygen in the Schumann-Runge band system at 193 nm. A comparison between the predicted pressure and temperature profiles obtained in the underexpanded round jet with the fluorescence image data is presented. Keywords: Laser, Fluorescence, Imaging, Oxygen, Supersonic Flow, Excimer.