EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering

Download or read book Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering written by Akhyar and published by Springer Nature. This book was released on 2021-05-31 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers a selection of peer-reviewed papers presented at the 2nd International Conference on Experimental and Computational Mechanics in Engineering (ICECME 2020), held as a virtual conference and organized by Universitas Syiah Kuala, Banda Aceh, Indonesia, on 13–14 October 2020. The contributions, prepared by international scientists and engineers, cover the latest advances in computational mechanics, metallurgy and material science, energy systems, manufacturing processing systems, industrial and system engineering, biomechanics, artificial intelligence, micro/nano-engineering, micro-electro-mechanical system, machine learning, mechatronics, and engineering design. The book is intended for academics, including graduate students and researchers, as well as industrial practitioners working in the areas of experimental and computational mechanics.

Book Laser Based Flowfield Imaging in a Lean Premixed Prevaporized Sector Combustor

Download or read book Laser Based Flowfield Imaging in a Lean Premixed Prevaporized Sector Combustor written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: OH and fuel planar laser-induced fluorescence (PLIF) is used qualitatively in this study to observe the flame structure resultant from different fuel injector dome configurations within the 3-cup sector combustor test rig. The fluorescence images are compared with some computational fluid dynamics (CFD) results. Interferences in obtaining OH fluorescence signals due to the emission of other species are assessed. NO PLIF images are presented and compared to gas analysis results. The comparison shows that PLIF NO can be an excellent method for measuring NO in the flame. Additionally, we present flow visualization of the molecular species C2.Hicks, Yolanda R. and Locke, Randy J. and Anderson, Robert C.Glenn Research CenterCOMPUTATIONAL FLUID DYNAMICS; FLOW DISTRIBUTION; LASER INDUCED FLUORESCENCE; PREMIXING; COMBUSTION CHAMBERS; PREVAPORIZATION; GAS ANALYSIS; FUEL INJECTION; DETECTORS; CCD CAMERAS; LASER BEAMS; HYDROXIDES; NITROGEN OXIDES; IMAGE ANALYSIS; LASER APPLICATIONS

Book Development and Optimisation of Two line Planar Laser Induced Fluorescence Technique for Combustion Measurements

Download or read book Development and Optimisation of Two line Planar Laser Induced Fluorescence Technique for Combustion Measurements written by Mohammadreza Anbari Attar and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This study has focused on development, optimisation and implementation of the 2-line Planar Laser Induced Fluorescence (2-line PLIF) technique for combustion measurements on a single cylinder optical Gasoline Direct Injection (GDI) engine with both Spark Ignition (SI) and Controlled Auto Ignition (CAI) combustion operations. The CAI combustion was achieved by employing Negative Valve Overlap (NVO). Two excitation wavelengths at 308 nm (directly from a XeCl laser) and 277 nm (via Raman shifting a KrF laser output at 248 nm) were exploited for the measurements. A calibration curve of fluorescence signal intensity ratio of the two laser beams as a function of temperature was obtained by conducting a series of static tests on a specially designed Constant Volume Chamber (CVC). The developed technique was validated by measurements of in-cylinder charge temperature during the compression stroke for both motoring and firing cycles and comparing the PLIF values with the temperature values calculated from in-cylinder pressure data assuming a polytropic compression. Following the validation measurements, the technique was applied to study of fuel spray characteristics and simultaneous measurements of in-cylinder charge temperature and mole fraction of Exhaust Gas Residuals (EGR). Further optimisation of the thermometry technique by enhancing the fluorescence Signal to Noise Ratio (SNR) and improving both the temporal and spatial resolutions as well as measurements precision provided the opportunity to apply the technique to other combustion measurements. The thesis presents the first application of the 2-line PLIF diagnostic in study of direct injection charge cooling effects and study of flame thermal stratification in IC engines.

Book Tracer based Planar Laser induced Fluorescence Diagnostics

Download or read book Tracer based Planar Laser induced Fluorescence Diagnostics written by Brian Ho-yin Cheung and published by Stanford University. This book was released on 2011 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two advances to tracer-based planar laser-induced fluorescence (PLIF) diagnostics are presented in this work. The first improvement is the development of a 3-pentanone fluorescence quantum yield (FQY) database and model for a wide range of conditions in support of quantitative PLIF diagnostics. In addition, this work presents a sensitive, time-resolved tracer-based PLIF diagnostic, accomplished by using a continuous-wave (CW) laser with the high-FQY tracer toluene. Because of its ease of use and desirable photophysical properties, PLIF diagnostics using 3-pentanone as a tracer are common, particularly for internal combustion engine (ICE) diagnostics. Thus, there is a need for 3-pentanone FQY measurements and modeling over a wide range of temperatures, pressures, and excitation wavelengths. For insight into the collisionless process in the FQY model, measurements were made in 3-pentanone vapor at low-pressures across a range of temperatures using a flowing cell. Laser excitation with 248, 266, 277, 308 nm wavelengths were utilized, and Rayleigh scattering of the laser beam was used to calibrate the optical efficiency of the collection optics and detector. This low-pressure data allows calculation of the 3-pentanone fluorescence rate and non-radiative de-excitation rate in the fluorescence model. The vibrational relaxation cascade parameter for 3-pentanone collisions was also determined. Measurements of 3-pentanone FQY were also made over a range of temperatures and pressures relevant to diagnostic applications, and, in particular, combined high-temperature and high-pressure conditions applicable to internal combustion engines (ICE). These data were collected in a custom-built optical cell capable of simultaneous high-pressure and high-temperature conditions. The behavior of the FQY in nitrogen for temperatures up to 745 K and in air up to 570 K was examined for pressures from 1 to 25 bar. These data were used to further optimize the parameters in the FQY model representing collisional processes. The large quantity of data with 308 nm excitation allowed optimization of the nitrogen quenching rate, and data in air were used to optimize the oxygen quenching rate. These data were also used to optimize the vibrational relaxation parameters for nitrogen and oxygen. The model with the updated parameters is consistent with the data collected in the current work, as well as with fluorescence measurements made in optical ICEs up to 1100 K and 28 bar. Another area of tracer-based PLIF diagnostics development is time-resolved imaging. Because PLIF diagnostics are often performed using pulsed lasers, the time resolution of measurements is limited to the pulse rate of laser. Use of a high-powered visible laser with an off-the-shelf cavity frequency doubler is shown to produce a moderate-power CW beam in the ultraviolet wavelength regime. Application of this CW source to excite toluene, a high-FQY tracer, yields a sensitive, time-resolved tracer-based PLIF diagnostic. Fluctuation detection limits for tracer mole fraction were investigated by applying the diagnostic to an atmospheric temperature and pressure nitrogen jet seeded with 4% toluene, and detection limits of better than 1% of the maximum toluene mole fraction were achieved for detection of fluorescence signal at a point, along a line, and over a plane. The diagnostic was also demonstrated on a turbulent jet for line and planar detection and demonstrated the potential for toluene time-resolved PLIF diagnostics with CW lasers.

Book Experimental Study of Mixing of Directly Injected Fuel with Air in an Optically Accessible Engine Using Laser Induced Fluorescence

Download or read book Experimental Study of Mixing of Directly Injected Fuel with Air in an Optically Accessible Engine Using Laser Induced Fluorescence written by Jon Clayton Darrow and published by . This book was released on 1998 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book In Cylinder Particulate Matter and Spray Imaging of Ethanol Gasoline Blends in a Direct Injection Spark Ignition Engine

Download or read book In Cylinder Particulate Matter and Spray Imaging of Ethanol Gasoline Blends in a Direct Injection Spark Ignition Engine written by Mohammad Fatouraie and published by . This book was released on 2013 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Laser Ignition of Internal Combustion Engines

Download or read book Laser Ignition of Internal Combustion Engines written by Martin Weinrotter and published by GRIN Verlag. This book was released on 2011-03-31 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doctoral Thesis / Dissertation from the year 2006 in the subject Electrotechnology, grade: 1, mit Ausgezeichnung bestanden, Vienna University of Technology (Insitut für Photonik), language: English, abstract: In this PhD thesis different fundamental aspects and the practical usability of a laser ignition system as a new, innovative and alternative ignition approach for internal combustion engines were investigated in great detail mainly experimentally. Ignition experiments in combustion chambers under high pressures and elevated temperatures have been conducted. Different fuels were investigated. Also the minimum breakdown energy in dependence of the initial temperature and pressure with the help of an aspheric lens with a high numerical aperture was studied. High-speed Schlieren diagnostics have been conducted in the combustion chamber. The different stages like the ignition plasma within the first nanoseconds via the shock wave generation to the expanding flame kernel were investigated. With the help of multi-point ignition the combustion duration could be reduced significantly. The controlled start of auto-ignition of n-heptane-air mixtures by resonant absorption of Er,Cr:YSGG laser radiation at 2.78 μm by additionally introduced water has been proven in combustion chamber experiments as a completely new idea. Beside experiments in the combustion chambers and long term tests under atmospheric conditions, various tests in SI engines up to 200 h, have been made. Different sources of contamination of the window surface have been identified. First experiments with a longitudinally diode-pumped, fiber-coupled and passively Q-switched solid-state laser α-prototype system with maximum pulse energy of 1.5 mJ at about 1.5 ns pulse duration were performed which allowed to ignite the engine successfully over a test period of 100 h. In cooperation with Lund University in Sweden, experiments have been performed on another engine test bed running in HCCI mode revealing the laser spark to be able to stimulate the auto-ignition process and to trigger the onset of combustion. In another international cooperation conducted with the Southwest Research Institute in Texas, U.S.A., the potential of laser ignition in combination with the so called HEDGE concept was studied. As a final direction of the work, first calculations and experiments of a β- prototype ignition laser of an own design have been conducted. The concept of a longitudinally diode-pumped, fiber-coupled and passively Q-switched solid-state laser was chosen as the most promising. Emitted pulse energy of 2 mJ within around 1 ns pulse duration was achieved easily allowing generating a laser-induced breakdown in air.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 1572 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Annual Index abstracts of SAE Technical Papers

Download or read book Annual Index abstracts of SAE Technical Papers written by and published by . This book was released on 2007 with total page 1218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Technical Literature Abstracts

Download or read book Technical Literature Abstracts written by Society of Automotive Engineers and published by . This book was released on 1995 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental root cause analysis of low speed pre ignition mechanisms on a turbocharged gasoline engine with direct injection

Download or read book Experimental root cause analysis of low speed pre ignition mechanisms on a turbocharged gasoline engine with direct injection written by Thorsten Schweizer and published by Logos Verlag Berlin GmbH. This book was released on 2024-07-04 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of increasing power density is a successful approach to improving the conflict between efficiency and emission behavior of spark-ignition engine drive units for light-duty vehicles. This leads to highly charged gasoline engines with direct injection and high specific torque and power densities, promoting a not yet fully understood combustion anomaly known as low-speed pre-ignition (LSPI). This unpredictable, multicyclic phenomenon limits the depictable in-cylinder pressures, further efficiency gains and engine reliability. Only with a holistic understanding of the LSPI root cause mechanisms and processes can targeted countermeasures be taken and further efficiency gains achieved. A novel methodology pathway for LSPI root cause analysis was developed to accompany the entire LSPI event emergence process path by means of a multi-experimental approach on a modern high efficiency engine. This includes the identification of key LSPI activity – engine parameter specification relations, minimally invasive high-speed endoscopic imaging and further LSPI key experiments. Only the accumulation of inorganic substances originating from lubricating oil additives enables specific deposits/particles to ignite the surrounding mixture over a multicyclic process due to the resulting increased oxidation reactivity. Through a final synthesis step of all results, a multi-cycle oxidation-reactivity-enhanced deposit/particle-driven LSPI root cause mechanism is established.