Download or read book Convection in Rotating Fluids written by B.M. Boubnov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial inhomogeneity of heating of fluids in the gravity field is the cause of all motions in nature: in the atmosphere and the oceans on Earth, in astrophysical and planetary objects. All natural objects rotate and convective motions in rotating fluids are of interest in many geophysical and astrophysical phenomena. In many industrial applications, too (crystal growth, semiconductor manufacturing), heating and rotation are the main mechanisms defining the structure and quality of the material. Depending on the geometry of the systems and the mutual orientation of temperature and gravity field, a variety of phenomena will arise in rotating fluids, such as regular and oscillating waves, intensive solitary vortices and regular vortex grids, interacting vortices and turbulent mixing. In this book the authors elucidate the physical essence of these phenomena, determining and classifying flow regimes in the space of similarity numbers. The theoretical and computational results are presented only when the results help to explain basic qualitative motion characteristics. The book will be of interest to researchers and graduate students in fluid mechanics, meteorology, oceanography and astrophysics, crystallography, heat and mass transfer.
Download or read book Physics of Rotating Fluids written by Christoph Egbers and published by Springer. This book was released on 2008-01-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to recent developments in the field of rotating fluids, in particular the study of Taylor--Couette flow, spherical Couette flow, planar Couette flow, as well as rotating annulus flow. Besides a comprehensive overview of the current state of the art, possible future directions in this research field are investigated. The first part of this volume presents several new results in the classical Taylor--Couette system covering diverse theoretical, experimental and numerical work on bifurcation theory, influence of boundary conditions, counter-rotating flows, spiral vortices and many others. The second part focuses on spherical Couette flows, including isothermal flows, thermal convective motion, as well as magnetohydrodynamics in spherical shells. The remaining parts are devoted to Goertler vortices, rotating annulus flows, as well as superfluid Couette flows. The present book will be of interest to all researchers and graduate students working actively in the field.
Download or read book Rotating Flow written by Peter Childs and published by Elsevier. This book was released on 2010-10-29 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources
Download or read book Theory and Modeling of Rotating Fluids written by Keke Zhang and published by Cambridge University Press. This book was released on 2017-05-23 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and numerical detail is provided in a variety of geometries such that the analysis and results can be readily reproduced, and many numerical tables are included to enable readers to compare or benchmark their own calculations. Traditionally, there are two disjointed topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). Now, for the first time in book form, a unified theory is presented for three topics - thermal convection, inertial waves and precession-driven flow - to demonstrate that these seemingly complicated, and previously disconnected, problems become mathematically simple in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids.
Download or read book Essential Fluid Dynamics for Scientists written by Jonathan Braithwaite and published by Morgan & Claypool Publishers. This book was released on 2018-01-09 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.
Download or read book Fluid Mechanics written by Pijush K. Kundu and published by Academic Press. This book was released on 2012 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level, this book presents the study of how fluids behave and interact under various forces and in various applied situations - whether in the liquid or gaseous state or both.
Download or read book Introduction to Mathematical Fluid Dynamics written by Richard E. Meyer and published by Courier Corporation. This book was released on 2012-03-08 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geared toward advanced undergraduate and graduate students in applied mathematics, engineering, and the physical sciences, this introductory text covers kinematics, momentum principle, Newtonian fluid, compressibility, and other subjects. 1971 edition.
Download or read book The Theory of Rotating Fluids written by Greenspan and published by CUP Archive. This book was released on 1968-07 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Turbulence in Rotating Stratified and Electrically Conducting Fluids written by P. A. Davidson and published by Cambridge University Press. This book was released on 2013-09-12 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two recurring themes in astrophysical and geophysical fluid mechanics: waves and turbulence. This book investigates how turbulence responds to rotation, stratification or magnetic fields, identifying common themes, where they exist, as well as the essential differences which inevitably arise between different classes of flow. The discussion is developed from first principles, making the book suitable for graduate students as well as professional researchers. The author focuses first on the fundamentals and then progresses to such topics as the atmospheric boundary layer, turbulence in the upper atmosphere, turbulence in the core of the earth, zonal winds in the giant planets, turbulence within the interior of the sun, the solar wind, and turbulent flows in accretion discs. The book will appeal to engineers, geophysicists, astrophysicists and applied mathematicians who are interested in naturally occurring turbulent flows.
Download or read book Fluid Mechanics written by L D Landau and published by Elsevier. This book was released on 2013-09-03 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.
Download or read book Theoretical Fluid Mechanics written by Richard Fitzpatrick and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Theoretical Fluid Mechanics' has been written to aid physics students who wish to pursue a course of self-study in fluid mechanics. It is a comprehensive, completely self-contained text with equations of fluid mechanics derived from first principles, and any required advanced mathematics is either fully explained in the text, or in an appendix. It is accompanied by about 180 exercises with completely worked out solutions. It also includes extensive sections on the application of fluid mechanics to topics of importance in astrophysics and geophysics. These topics include the equilibrium of rotating, self-gravitating, fluid masses; tidal bores; terrestrial ocean tides; and the Eddington solar model."--Prové de l'editor.
Download or read book Rotating Fluids in Engineering and Science written by J P Vanyo and published by Elsevier. This book was released on 2015-09-02 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approx.440 pages
Download or read book Physical Fluid Dynamics written by D. J. Tritton and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: To classify a book as 'experimental' rather than 'theoretical' or as 'pure' rather than 'applied' is liable to imply umeal distinctions. Nevertheless, some Classification is necessary to teIl the potential reader whether the book is for him. In this spirit, this book may be said to treat fluid dynamies as a branch of physics, rather than as a branch of applied mathematics or of engineering. I have often heard expressions of the need for such a book, and certainly I have feIt it in my own teaching. I have written it primariIy for students of physics and of physics-based applied science, aIthough I hope others may find it useful. The book differs from existing 'fundamental' books in placing much greater emphasis on what we know through laboratory experiments and their physical interpretation and less on the mathe matieal formalism. It differs from existing 'applied' books in that the choice of topics has been made for the insight they give into the behaviour of fluids in motion rather than for their practical importance. There are differences also from many existing books on fluid dynamics in the branches treated, reflecting to some extent shifts of interest in reeent years. In particular, geophysical and astrophysical applications have prompted important fundamental developments in topics such as conveetion, stratified flow, and the dynamics of rotating fluids. These developments have hitherto been reflected in the contents of textbooks only to a limited extent.
Download or read book College Physics for AP Courses written by Irna Lyublinskaya and published by . This book was released on 2015-07-31 with total page 1665 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
Download or read book Elementary Fluid Mechanics written by Tsutomu Kambe and published by World Scientific. This book was released on 2007 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook describes the fundamental OC physicalOCO aspects of fluid flows for beginners of fluid mechanics in physics, mathematics and engineering, from the point of view of modern physics. It also emphasizes the dynamical aspects of fluid motions rather than the static aspects, illustrating vortex motions, waves, geophysical flows, chaos and turbulence. Beginning with the fundamental concepts of the nature of flows and the properties of fluids, the book presents fundamental conservation equations of mass, momentum and energy, and the equations of motion for both inviscid and viscous fluids. In addition to the fundamentals, this book also covers water waves and sound waves, vortex motions, geophysical flows, nonlinear instability, chaos, and turbulence. Furthermore, it includes the chapters on superfluids and the gauge theory of fluid flows. The material in the book emerged from the lecture notes for an intensive course on Elementary Fluid Mechanics for both undergraduate and postgraduate students of theoretical physics given in 2003 and 2004 at the Nankai Institute of Mathematics (Tianjin) in China. Hence, each chapter may be presented separately as a single lecture."
Download or read book Principles of Fluid Mechanics written by Andreas N. Alexandrou and published by Pearson. This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and wide-ranging introduction to fluid mechanics, assuming only a basic knowledge of calculus and physics. Introduces fluid mechanics within the context of a broad range of topics and disciplines by combining elements and concepts from different disciplines as is often found in solutions to engineering problems. The book integrates a discussion of fluid flow phenomena with that of other subjects, such as Solid Mechanics, Heat Transfer, Thermodynamics, and others. It also includes discussions of other fields of specialization often used to solve engineering problems, such as chemistry, biology, economics, sociology, and others. And, it integrates the use of computers and modern experimental techniques. The first edition of Introduction to Fluid Mechanics provides a unique thematic organization and divides the material into three sections: Theory. This section is divided into four categories: Introduction, Conservation Laws, Fluid Kinematics, and Fluid Dynamics. Analysis. In this section, procedures such as Dimensionless Analysis, Analytics, Experimental and Numerical Solutions are introduced and applied to fundamental problems. Special Topics. Topics such as ideal, invisicid flow, compressible flow, and dynamics of rotating fluids are reserved for separate chapters. The book also introduces ideas from computational and experimental fluid mechanics. An essential reference for all engineering professionals.
Download or read book Mathematical Fluid Mechanics written by B. Mahanthesh and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-08 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Without mathematics no science would survive. This especially applies to the engineering sciences which highly depend on the applications of mathematics and mathematical tools such as optimization techniques, finite element methods, differential equations, fluid dynamics, mathematical modelling, and simulation. Neither optimization in engineering, nor the performance of safety-critical system and system security; nor high assurance software architecture and design would be possible without the development of mathematical applications. De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences (AMEIS) focusses on the latest applications of engineering and information technology that are possible only with the use of mathematical methods. By identifying the gaps in knowledge of engineering applications the AMEIS series fosters the international interchange between the sciences and keeps the reader informed about the latest developments.