Download or read book Physics and Simulation of Optoelectronic Devices XXV written by Bernd Witzigmann and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Optoelectronic Devices written by Joachim Piprek and published by Springer Science & Business Media. This book was released on 2006-01-26 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronic devices transform electrical signals into optical signals (and vice versa) by utilizing the interaction of electrons and light. Advanced software tools for the design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help the reader to better understand internal device physics. Real-world devices such as edge-emitting or surface-emitting laser diodes, light-emitting diodes, solar cells, photodetectors, and integrated optoelectronic circuits are investigated. The software packages described in the book are available to the public, on a commercial or noncommercial basis, so that the interested reader is quickly able to perform similar simulations.
Download or read book Handbook of Optoelectronic Device Modeling and Simulation written by Joachim Piprek and published by CRC Press. This book was released on 2017-10-12 with total page 887 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. Gives a broad overview of concepts with concise explanations illustrated by real results. Compares different levels of modeling, from simple analytical models to complex numerical models. Discusses practical methods of model validation. Includes an overview of numerical techniques.
Download or read book Physics and Simulation of Optoelectronic Devices written by and published by . This book was released on 2007 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Physics of Optoelectronic Devices written by Shun Lien Chuang and published by Wiley-Interscience. This book was released on 1995-09-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizes the theory of semiconductor optoelectronic devices, demonstrating comparisons between theoretical and experimental results. Presents such important topics as semiconductor heterojunctions and band structure calculations near the band edges for bulk and quantum-well semiconductors. Details semiconductor lasers including double-heterostructure, stripe-geometry gain-guided semiconductor, distributed feedback and surface-emitting. Systematically investigates high-speed modulation of semiconductor lasers using linear and nonlinear gains. Features new subjects such as the theories on the band structures of strained semiconductors and strained quantum-well lasers. Covers key areas behind the operation of semiconductor lasers, modulators and photodetectors. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department
Download or read book Nitride Semiconductor Devices written by Joachim Piprek and published by John Wiley & Sons. This book was released on 2007-04-09 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to be published on physical principles, mathematical models, and practical simulation of GaN-based devices. Gallium nitride and its related compounds enable the fabrication of highly efficient light-emitting diodes and lasers for a broad spectrum of wavelengths, ranging from red through yellow and green to blue and ultraviolet. Since the breakthrough demonstration of blue laser diodes by Shuji Nakamura in 1995, this field has experienced tremendous growth worldwide. Various applications can be seen in our everyday life, from green traffic lights to full-color outdoor displays to high-definition DVD players. In recent years, nitride device modeling and simulation has gained importance and advanced software tools are emerging. Similar developments occurred in the past with other semiconductors such as silicon, where computer simulation is now an integral part of device development and fabrication. This book presents a review of modern device concepts and models, written by leading researchers in the field. It is intended for scientists and device engineers who are interested in employing computer simulation for nitride device design and analysis.
Download or read book Semiconductor Optoelectronic Devices written by Joachim Piprek and published by Elsevier. This book was released on 2013-10-22 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronics has become an important part of our lives. Wherever light is used to transmit information, tiny semiconductor devices are needed to transfer electrical current into optical signals and vice versa. Examples include light emitting diodes in radios and other appliances, photodetectors in elevator doors and digital cameras, and laser diodes that transmit phone calls through glass fibers. Such optoelectronic devices take advantage of sophisticated interactions between electrons and light. Nanometer scale semiconductor structures are often at the heart of modern optoelectronic devices. Their shrinking size and increasing complexity make computer simulation an important tool to design better devices that meet ever rising perfomance requirements. The current need to apply advanced design software in optoelectronics follows the trend observed in the 1980's with simulation software for silicon devices. Today, software for technology computer-aided design (TCAD) and electronic design automation (EDA) represents a fundamental part of the silicon industry. In optoelectronics, advanced commercial device software has emerged recently and it is expected to play an increasingly important role in the near future. This book will enable students, device engineers, and researchers to more effectively use advanced design software in optoelectronics. - Provides fundamental knowledge in semiconductor physics and in electromagnetics, while helping to understand and use advanced device simulation software - Demonstrates the combination of measurements and simulations in order to obtain realistic results and provides data on all required material parameters - Gives deep insight into the physics of state-of-the-art devices and helps to design and analyze of modern optoelectronic devices
Download or read book Introduction to Simulations of Semiconductor Lasers written by Marek Wartak and published by CRC Press. This book was released on 2024-03-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulations play an increasingly important role not only in scientific research but also in engineering developments. Introduction to Simulations of Semiconductor Lasers introduces senior undergraduates to the design of semiconductor lasers and their simulations. The book begins with explaining the physics and fundamental characteristics behind semiconductor lasers and their applications. It presumes little prior knowledge, such that only a familiarity with the basics of electromagnetism and quantum mechanics is required. The book transitions from textbook explanations, equations, and formulas to ready-to-run numeric codes that enable the visualization of concepts and simulation studies. Multiple chapters are supported by MATLAB code which can be accessed by the students. These are ready-to-run, but they can be modified to simulate other structures if desired. Providing a unified treatment of the fundamental principles and physics of semiconductors and semiconductor lasers, Introduction to Simulations of Semiconductor Lasers is an accessible, practical guide for advanced undergraduate students of Physics, particularly for courses in laser physics. Key Features: A unified treatment of fundamental principles Explanations of the fundamental physics of semiconductor Explanations of the operation of semiconductor lasers An historical overview of the subject
Download or read book The Physics of Semiconductors written by Kevin F. Brennan and published by Cambridge University Press. This book was released on 1999-02-13 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practising engineers in optoelectronics and related areas.
Download or read book Wireless Terahertz Communications Optoelectronic Devices and Signal Processing written by Harter, Tobias and published by KIT Scientific Publishing. This book was released on 2021-06-22 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel THz device concepts and signal processing schemes are introduced and experimentally confirmed. Record-high data rates are achieved with a simple envelope detector at the receiver. Moreover, a THz communication system using an optoelectronic receiver and a photonic local oscillator is shown for the first time, and a new class of devices for THz transmitters and receivers is investigated which enables a monolithic co-integration of THz components with advanced silicon photonic circuits.
Download or read book Physics Simulation and Photonic Engineering of Photovoltaic Devices written by Alexandre Freundlich and published by . This book was released on 2012 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes Proceedings Vol. 7821
Download or read book Physics of Photonic Devices written by Shun Lien Chuang and published by John Wiley & Sons. This book was released on 2012-11-07 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as: surface plasmonics and micro-ring resonators; the theory of optical gain and absorption in quantum dots and quantum wires and their applications in semiconductor lasers; and novel microcavity and photonic crystal lasers, quantum-cascade lasers, and GaN blue-green lasers within the context of advanced semiconductor lasers. Physics of Photonic Devices, Second Edition presents novel information that is not yet available in book form elsewhere. Many problem sets have been updated, the answers to which are available in an all-new Solutions Manual for instructors. Comprehensive, timely, and practical, Physics of Photonic Devices is an invaluable textbook for advanced undergraduate and graduate courses in photonics and an indispensable tool for researchers working in this rapidly growing field.
Download or read book Optical Polymer Waveguides written by Jörg Franke and published by Springer Nature. This book was released on 2022-12-06 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Light signals in optical waveguides can be used to transmit very large amounts of data quickly and largely without interference. In the industrial and infrastructural sectors, e.g. in the automotive and aerospace industries, the demand to further exploit this potential is therefore increasing. Which technologies can be used to effectively integrate systems that transmit data by means of light into existing components? This is a central question for current research. So far, there have been some technical limitations in this regard. For example, it is difficult to couple the signal of an optical waveguide to other optical waveguides without interruption. There is also a lack of suitable fabrication technologies for three-dimensional waveguides, as well as design and simulation environments for 3D opto-MID. This book addresses these and other challenges.
Download or read book Optoelectronic Devices written by Niloy K Dutta and published by World Scientific. This book was released on 2018-06-27 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'A very handy feature of this book includes an appendix section consisting of fifteen parts, each dedicated to listing equations and solution examples for calculating various important quantities for optoelectronic devices. This book is an in-depth technical resource for understanding the principles of various types of optoelectronic devices and systems. Students, as well as working professionals, would find this book useful for calculating quantities needed in the design of optical system components. There is a section, at the end of the book, along with an extension reference list at the end of each chapter that provides problems from each chapter, making this book suitable for an undergraduate or graduate class in electrical engineering on optoelectronic theory.'IEEE Electrical Insulation MagazineThis book provides a comprehensive treatment of the design and applications of optoelectronic devices. Optoelectronic devices such as light emitting diodes (LEDs), semiconductor lasers, photodetectors, optical fibers, and solar cells, are important components for solid state lighting systems, optical communication systems, and power generation systems. Optical fiber amplifiers and fiber lasers are also important for high power industrial applications and sensors. The applications of optoelectronic devices were first studied in the 1970's. Since then, the diversity and scope of optoelectronic device research and applications have been steadily growing.Optoelectronic Devices is self-contained and unified in presentation. It can be used as an advanced textbook by graduate students and practicing engineers. It is also suitable for non-experts who wish to have an overview of optoelectronic devices and systems. The treatments in the book are detailed enough to capture the interest of the curious reader and complete enough to provide the necessary background to explore the subject further.
Download or read book Semiconductor Device Modeling with Spice written by Giuseppe Massabrio and published by McGraw Hill Professional. This book was released on 1998-12-22 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
Download or read book Optoelectronic Devices written by Xun Li and published by Cambridge University Press. This book was released on 2009-06-11 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a clear application focus, this book explores optoelectronic device design and modeling through physics models and systematic numerical analysis. By obtaining solutions directly from the physics-based governing equations through numerical techniques, the author shows how to develop new devices and how to enhance the performance of existing devices. Semiconductor-based optoelectronic devices such as semiconductor laser diodes, electroabsorption modulators, semiconductor optical amplifiers, superluminescent light emitting diodes and their integrations are all covered. Including step-by-step practical design and simulation examples together with detailed numerical algorithms, this book provides researchers, device designers and graduate students in optoelectronics with the numerical techniques to obtain solutions for their own structures.
Download or read book Principles of Photonic Integrated Circuits written by Richard Osgood jr. and published by Springer Nature. This book was released on 2021-05-21 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook presents the principles, design methods, simulation, and materials of photonic circuits. It provides state-of-the-art examples of silicon, indium phosphide, and other materials frequently used in these circuits, and includes a thorough discussion of all major types of devices. In addition, the book discusses the integrated photonic circuits (chips) that are currently increasingly employed on the international technology market in connection with short-range and long-range data communication. Featuring references from the latest research in the field, as well as chapter-end summaries and problem sets, Principles of Photonic Integrated Circuits is ideal for any graduate-level course on integrated photonics, or optical technology and communication.