EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Photovoltaic Solar Energy Conversion

Download or read book Photovoltaic Solar Energy Conversion written by Shiva Gorjian and published by Academic Press. This book was released on 2020-07-17 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic Solar Energy Conversion - Technologies, Applications and Environmental Impacts features comprehensive and up-to-date knowledge on the photovoltaic solar energy conversion technology and describes its different aspects in the context of most recent scientific and technological advances. It also provides an insight into future developments in this field by covering four distinct topics include "PV Cells and Modules", "Applications of PV Systems", "Life Cycle and Environmental Impacts" and "PV Market and Policies". An up-to-date reference book on the advances of photovoltaic solar energy conversion technology Describes different aspects of PV and PVT technologies in a comprehensive way Provides information on design, development, and monitoring of PV systems Covers applications of PV and PVT systems in the urban, industry, and agriculture sectors Features new concepts, environmental impacts, market and policies of the PV technology

Book Solar Energy Conversion

Download or read book Solar Energy Conversion written by R.C. Neville and published by Elsevier. This book was released on 1995-01-30 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: A large number of solar cell and solar cell systems are described in this volume. The theory of their operation, their design and the levels of their performance is discussed. Originally the book appeared in 1978 but extensive change over the intervening years in the fields of energy generation and consumption, solar energy and solar cells, has necessitated the publication of an updated version.The text initially surveys the requirements of humanity, the subsequent need for solar cells, the nature of sunlight and the properties of semiconductors. Concrete examples, extensive references and theoretical arguments are then used to present a comparison of options available in the design and operation of solar cells and solar cell systems. The cells - constructed from single, crystal, polycrystalline and amorphous semiconductors - and the systems - have varying designs and differing levels of solar energy for input and produce electricity or electrical and thermal energies. Solar cell production, economics and environmental effects are considered throughout the publication.

Book Solar Energy Conversion Systems

Download or read book Solar Energy Conversion Systems written by Jeffrey R. S. Brownson and published by Academic Press. This book was released on 2013-11-09 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners, and economists. Traditional texts in solar energy engineering have often emerged from mechanical or chemical engineering fields. Instead, Solar Energy Conversion Systems approaches solar energy conversion from the perspectives of integrative design, environmental technology, sustainability science, and materials science in the wake of amazing new thin films, polymers, and glasses developed by the optoelectronics and semiconductor industries. This is a new solar text for the new generation of green job designers and developers. It's highlighted with vignettes that break down solar conversion into useful stories and provides common points of reference, as well as techniques, for effective estimation of evolving technologies. - Contextualizes solar conversion for systems design and implementation in practical applications - Provides a complete understanding of solar power, from underlying science to essential economic outcomes - Analytical approach emphasizes systems simulations from measured irradiance and weather data rather than estimations from "rules of thumb" - Emphasizes integrative design and solar utility, where trans-disciplinary teams can develop sustainable solar solutions that increase client well-being and ecosystems services for a given locale

Book Solar Energy

Download or read book Solar Energy written by Arno Smets and published by Bloomsbury Publishing. This book was released on 2016-01-28 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview on the different aspects of solar energy, with a focus on photovoltaics, which is the technology that allows light energy to be converted into electric energy. Renewable energy sources have become increasingly popular in recent years, and solar is one of the most adaptable and attractive types – from solar farms to support the National Grid to roof panels/tiles used for solar thermal heating systems, and small solar garden lights. Written by Delft University researchers, Solar Energy uniquely covers both the physics of photovoltaic (PV) cells and the design of PV systems for real-life applications, from a concise history of solar cells components and location issues of current systems. The book is designed to make this complicated subject accessible to all, and is packed with fascinating graphs and charts, as well as useful exercises to cement the topics covered in each chapter. Solar Energy outlines the fundamental principles of semiconductor solar cells, as well as PV technology: crystalline silicon solar cells, thin-film cells, PV modules, and third-generation concepts. There is also background on PV systems, from simple stand-alone to complex systems connected to the grid. This is an invaluable reference for physics students, researchers, industrial engineers and designers working in solar energy generation, as well those with a general interest in renewable energy.

Book Third Generation Photovoltaics

Download or read book Third Generation Photovoltaics written by Martin A. Green and published by Springer Science & Business Media. This book was released on 2006-09-05 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present "first generation" products use the same silicon wafers as in microelectronics. "Second generation" thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the world’s foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.

Book The Physics of Solar Energy Conversion

Download or read book The Physics of Solar Energy Conversion written by Juan Bisquert and published by CRC Press. This book was released on 2020-06-09 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on advanced energy conversion devices such as solar cells has intensified in the last two decades. A broad landscape of candidate materials and devices were discovered and systematically studied for effective solar energy conversion and utilization. New concepts have emerged forming a rather powerful picture embracing the mechanisms and limitation to efficiencies of different types of devices. The Physics of Solar Energy Conversion introduces the main physico-chemical principles that govern the operation of energy devices for energy conversion and storage, with a detailed view of the principles of solar energy conversion using advanced materials. Key Features include: Highlights recent rapid advances with the discovery of perovskite solar cells and their development. Analyzes the properties of organic solar cells, lithium ion batteries, light emitting diodes and the semiconductor materials for hydrogen production by water splitting. Embraces concepts from nanostructured and highly disordered materials to lead halide perovskite solar cells Takes a broad perspective and comprehensively addresses the fundamentals so that the reader can apply these and assess future developments and technologies in the field. Introduces basic techniques and methods for understanding the materials and interfaces that compose operative energy devices such as solar cells and solar fuel converters.

Book Energy Harvesting

    Book Details:
  • Author : Alireza Khaligh
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351834029
  • Pages : 529 pages

Download or read book Energy Harvesting written by Alireza Khaligh and published by CRC Press. This book was released on 2017-12-19 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.

Book Renewable energy conversion systems

Download or read book Renewable energy conversion systems written by Muhammad Kamran and published by Academic Press. This book was released on 2021-05-15 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems

Book The Physics of Solar Cells

Download or read book The Physics of Solar Cells written by Juan Bisquert and published by CRC Press. This book was released on 2017-11-15 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an explanation of the operation of photovoltaic devices from a broad perspective that embraces a variety of materials concepts, from nanostructured and highly disordered organic materials, to highly efficient devices such as the lead halide perovskite solar cells. The book establishes from the beginning a simple but very rich model of a solar cell, in order to develop and understand step by step the photovoltaic operation according to fundamental physical properties and constraints. It emphasizes the aspects pertaining to the functioning of a solar cell and the determination of limiting efficiencies of energy conversion. The final chapters of the book establish a more refined and realistic treatment of the many factors that determine the actual performance of experimental devices: transport gradients, interfacial recombination, optical losses and so forth. The book finishes with a short review of additional important aspects of solar energy conversion, such as the photonic aspects of spectral modification, and the direct conversion of solar photons to chemical fuel via electrochemical reactions.

Book Nanostructured Materials for Solar Energy Conversion

Download or read book Nanostructured Materials for Solar Energy Conversion written by Tetsuo Soga and published by Elsevier. This book was released on 2006-12-14 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area.* Focuses on the use of nanostructured materials for solar energy* Looks at a wide variety of materials and device types* Covers both organic and inorganic materials

Book Solar Energy Conversion and Storage

Download or read book Solar Energy Conversion and Storage written by Suresh C. Ameta and published by CRC Press. This book was released on 2015-11-05 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Energy Conversion and Storage: Photochemical Modes showcases the latest advances in solar cell technology while offering valuable insight into the future of solar energy conversion and storage. Focusing on photochemical methods of converting and/or storing light energy in the form of electrical or chemical energy, the book:Describes various t

Book Fundamentals Of Solar Cells

Download or read book Fundamentals Of Solar Cells written by Alan Fahrenbruch and published by Elsevier. This book was released on 2012-12-02 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion provides an introduction to the fundamental physical principles of solar cells. It aims to promote the expansion of solar photovoltaics from relatively small and specialized use to a large-scale contribution to energy supply. The book begins with a review of basic concepts such as the source of energy, the role of photovoltaic conversion, the development of photovoltaic cells, and sequence of phenomena involved in solar power generation. This is followed by separate chapters on each of the processes that take place in solar cell. These include solar input; properties of semiconductors; recombination and the flow of photogenerated carriers; charge separation and the characteristics of junction barriers; and calculation of solar efficiency. Subsequent chapters deal with the operation of specific solar cell devices such as a single-crystal homojunction (Si); a single-crystal-heterojunction/buried-homojunction (AlGaAs/GaAs); and a polycrystalline, thin-film cell (CuxS/CdS). This book is intended for upper-level graduate students who have a reasonably good understanding of solid state physics and for scientists and engineers involved in research and development of solar cells.

Book Solar to Chemical Energy Conversion

Download or read book Solar to Chemical Energy Conversion written by Masakazu Sugiyama and published by Springer. This book was released on 2016-01-25 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the conversion of solar energy to chemical energy and its storage. It covers the basic background; interface modeling at the reacting surface; energy conversion with chemical, electrochemical and photoelectrochemical approaches and energy conversion using applied photosynthesis. The important concepts for converting solar to chemical energy are based on an understanding of the reactions’ equilibrium and non-equilibrium conditions. Since the energy conversion is essentially the transfer of free energy, the process are explained in the context of thermodynamics.

Book Solar Energy Conversion

    Book Details:
  • Author : Piotr Piotrwiak
  • Publisher : Royal Society of Chemistry
  • Release : 2013
  • ISBN : 1849733872
  • Pages : 397 pages

Download or read book Solar Energy Conversion written by Piotr Piotrwiak and published by Royal Society of Chemistry. This book was released on 2013 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the art review on experimental and theoretical approaches to the study of interfacial electron and excitation transfer processes which are so crucial to solar energy conversion.

Book Fundamentals of Thermophotovoltaic Energy Conversion

Download or read book Fundamentals of Thermophotovoltaic Energy Conversion written by Donald Chubb and published by Elsevier. This book was released on 2007-05-11 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Each chapter includes a summary and concludes with a set of problems.The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance the emitter efficiency is calculated. Chapter 4 discusses interference, plasma and resonant array filters plus an interference filter with an imbedded metallic layer, a combined interference-plasma filter and spectral control using a back surface reflector(BSR) on the PV array. The theory necessary to calculate the optical properties of these filters is presented. Chapter 5 presents the fundamentals of semiconductor PV cells. Using transport equations calculation of the current-voltage relation for a PV cell is carried out. Quantum efficiency, spectral response and the electrical equivalent circuit for a PV cell are introduced so that the PV cell efficiency and power output can be calculated.The final three chapters of the book consider the combination of the emitter, filter and PV array that make up the optical cavity of a TPV system. Chapter 6 applies radiation transfer theory to calculate the cavity efficiency of planar and cylindrical optical cavities. Also introduced in Chapter 6 are the overall TPV efficiency, thermal efficiency and PV efficiency. Leakage of radiation out of the optical cavity results in a significant loss in TPV efficiency. Chapter 7 considers that topic. The final chapter presents a model for a planar TPV system.Six appendices present background information necessary to carry out theoretical developments in the text. Two of the appendices include Mathematica programs for the spectral optical properties of multi-layer interference filters and a planar TPV system. Software is included for downloading all the programs within the book. - First text written on thermophotovoltaic(TPV) energy conversion - Includes all the necessary theory to calculate TPV system performance - Author has been doing TPV energy conversion research since 1980's - Emphasizes the fundamentals of TPV energy conversion - Includes a summary and problem set at the end of each chapter - Includes Mathematica programs for calculating optical properties of interference filters and planar TPV system performance solution software

Book Oxide Semiconductors for Solar Energy Conversion

Download or read book Oxide Semiconductors for Solar Energy Conversion written by Janusz Nowotny and published by CRC Press. This book was released on 2016-04-19 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxide semiconductors, including titanium dioxide (TiO2), are increasingly being considered as replacements for silicon in the development of the next generation of solar cells. Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide presents the basic properties of binary metal oxide semiconductors and the performance-related properties

Book Optimization of Photovoltaic Power Systems

Download or read book Optimization of Photovoltaic Power Systems written by Djamila Rekioua and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB® and Simulink® packages to help the reader understand and evaluate the performance of different photovoltaic systems. Optimisation of Photovoltaic Power Systems provides engineers, graduate and postgraduate students with the means to understand, assess and develop their own photovoltaic systems. As such, it is an essential tool for all those wishing to specialise in stand-alone photovoltaic systems. Optimisation of Photovoltaic Power Systems aims to enable all researchers in the field of electrical engineering to thoroughly understand the concepts of photovoltaic systems; find solutions to their problems; and choose the appropriate mathematical model for optimising photovoltaic energy.