EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Phononic and Excitonic Properties of Transition Metal Dichalcogenides

Download or read book Phononic and Excitonic Properties of Transition Metal Dichalcogenides written by Hans Tornatzky and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Excitonic Linewidth and Coherence Lifetime in Monolayer Transition Metal Dichalcogenides

Download or read book Excitonic Linewidth and Coherence Lifetime in Monolayer Transition Metal Dichalcogenides written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light-matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. We investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We also show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. Particularly, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures, in WS2.

Book Atom Photon Interactions

    Book Details:
  • Author : Claude Cohen-Tannoudji
  • Publisher : John Wiley & Sons
  • Release : 1998-03-23
  • ISBN : 0471293369
  • Pages : 691 pages

Download or read book Atom Photon Interactions written by Claude Cohen-Tannoudji and published by John Wiley & Sons. This book was released on 1998-03-23 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atom-Photon Interactions: Basic Processes and Applications allows the reader to master various aspects of the physics of the interaction between light and matter. It is devoted to the study of the interactions between photons and atoms in atomic and molecular physics, quantum optics, and laser physics. The elementary processes in which photons are emitted, absorbed, scattered, or exchanged between atoms are treated in detail and described using diagrammatic representation. The book presents different theoretical approaches, including: Perturbative methods The resolvent method Use of the master equation The Langevin equation The optical Bloch equations The dressed-atom approach Each method is presented in a self-contained manner so that it may be studied independently. Many applications of these approaches to simple and important physical phenomena are given to illustrate the potential and limitations of each method.

Book Investigation of Excitonic  Electronic and Thermal Properties of Two dimensional and Quasi one dimensional Materials

Download or read book Investigation of Excitonic Electronic and Thermal Properties of Two dimensional and Quasi one dimensional Materials written by Bishwajit Debnath and published by . This book was released on 2018 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: We explore the excitonic, electronic, phononic and thermal properties of low-dimensional materials, specifically the two-dimensional and quasi-one-dimensional transition metal chalcogenides. The possibility of observing Bose-Einstein exciton condensation (BEC) in transition metal dichalcogenides (TMDs) has been analyzed at three different levels of theory. We find that, in the strong coupling regime, mean field theory with either an unscreened or screened interlayer interaction predicts a room-temperature condensate. However, intralayer interactions can essentially renormalize the quasiparticle dispersion, which can be captured by many-body GW formalism. In the strong coupling regime, the improved BEC theory predicts that intralayer interactions have a large impact on the condensate order parameter, as well as on its functional dependencies on effective mass and carrier density. We also explore the thermal properties of 2D materials, specifically in the misoriented bilayer graphene (m-BLG) system, using ab initio density functional theory (DFT) and phonon Boltzmann transport equation (BTE). we find that the lattice thermal conductivity of m-BLG reduces to almost half of its unrotated counterpart. To explain the phonon dynamics, we analyze the phonon dispersions, phonon velocity distributions, occupations, density of states and heat capacity, both before and after misorientation. Detailed calculation of the phonon-phonon scattering lifetime reveals that, the increased umklapp scattering in the acoustic and quasi-acoustic phonon branches is the main reason for the reduced thermal conductivity in m-BLG system. We also explore the thermal conductivity of quasi-1D materials, specifically TaSe3 and NbS3, using ab initio DFT and phonon BTE. We find that both materials exhibit highly anisotropic thermal transport. A thermal conductivity of 6.3 W/mK (70.6 W/mK) is observed for metallic TaSe 3 (semiconducting NbS3) along the chain direction. In-depth study of velocity and lifetime distribution shows that lower scattering and higher phonon velocity in NbS3 are the reasons behind such higher thermal conductivity. The umklapp scattering process is found to be the dominant phonon scattering mechanism in this family of low-dimensional materials. We also investigate the electronic and vibrational properties of different phases of the quasi-1D material NbS3. We find that the dimerized phase NbS3-IV is a semiconductor, whereas the undimerized phase NbS 3-V is a metal. Similarity between the band dispersions of phase-I and phase-IV arises from the similarity in their structures, in spite of some stacking and chiral faults. Both phase-I and phase-IV are dynamically stable, whereas the phonon dispersion in phase-V exhibits instability along the inter-chain and growth direction, indicating a possible charge density wave ground state. Finally, we explore the band alignment properties of different quasi-1D transition metal trichalcogenides (TMTs). From the DFT calculations, we can identify several TMTs as promising candidates for ohmic contacts and tunnel FET devices.

Book Quantum Theory of the Optical and Electronic Properties of Semiconductors

Download or read book Quantum Theory of the Optical and Electronic Properties of Semiconductors written by Hartmut Haug and published by World Scientific. This book was released on 1994 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Alexander V. Kolobov and published by Springer. This book was released on 2016-07-26 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Narayanasamy Sabari Arul and published by Springer. This book was released on 2019-07-30 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Book Valley Dynamics and Excitonic Properties in Monolayer Transition Metal Dichalcogenides

Download or read book Valley Dynamics and Excitonic Properties in Monolayer Transition Metal Dichalcogenides written by Louis Bouet and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The possibility of isolating transition metal dichalcogenide monolayers by simple experimental means has been demonstrated in 2005, by the same technique used for graphene. This has sparked extremely diverse and active research by material scientists, physicists and chemists on these perfectly two-dimensional (2D) materials. Their physical properties inmonolayer formare appealing both fromthe point of view of fundamental science and for potential applications. Transition metal dichalcogenidemonolayers such asMoS2 have a direct optical bandgap in the visible and show strong absorption of the order of 10% per monolayer. For transistors based on single atomic layers, the presence of a gap allows to obtain high on/off ratios.In addition to potential applications in electronics and opto-electronics these 2D materials allow manipulating a new degree of freedom of electrons, in addition to the spin and the charge : Inversion symmetry breaking in addition to the strong spin-orbit coupling result in very original optical selection rules. The direct bandgap is situated at two non-equivalent valleys in k-space, K+ and K-. Using a specific laser polarization, carriers can be initialized either in the K+ or K- valley, allowing manipulating the valley index of the electronic states. This opens up an emerging research field termed "valleytronics". The present manuscript contains a set of experiments allowing understanding and characterizing the optoelectronic properties of these new materials. The first chapter is dedicated to the presentation of the scientific context. The original optical and electronic properties of monolayer transition metal dichalcogenides are demonstrated using a simple theoreticalmodel. The second chapter presents details of the samples and the experimental setup. Chapters 3 to 6 present details of the experiments carried out and the results obtained. We verify experimentally the optical selection rules. We identify the different emission peaks in the monolayer materials MoS2, WSe2 and MoSe2. In time resolved photoluminescence measurements we study the dynamics of photo-generated carriersand their polarization. An important part of this study is dedicated to experimental investigations of the properties of excitons, Coulomb bound electron-hole pairs. In the final experimental chapter, magneto-Photoluminescence allows us to probe the electronic band structure and to lift the valley degeneracy.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book 2D Excitonic Materials and Devices

Download or read book 2D Excitonic Materials and Devices written by and published by Elsevier. This book was released on 2023-11-23 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the latest information on cancer research - Offers outstanding and original reviews on a range of cancer research topics - Serves as an indispensable reference for researchers and students alike

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Chi Sin Tang and published by John Wiley & Sons. This book was released on 2023-11-14 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.

Book Two dimensional Coherent Spectroscopy of Monolayer Transition Metal Dichalcogenides

Download or read book Two dimensional Coherent Spectroscopy of Monolayer Transition Metal Dichalcogenides written by Chandriker Kavir Dass and published by . This book was released on 2015 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional semiconductors have long been studied for their unique optical and electronic properties, but with the work of Novoselov and Geim on van der Waals materials, two-dimensional semiconductors have seen a surge of renewed interest. This dissertation focuses on monolayer transition metal dichalcogenides (TMDCs), a class of two-dimensional materials that can easily be fabricated by mechanical exfoliation, much like graphene. In their bulk form, these materials have indirect band gaps, but transition to direct gap semiconductors in the monolayer limit. The band-edge optical response of TMDCs, like WSe2 and MoS2, is dominated by exciton absorption occurring at the ±K-points of the Brillouin zone. Because of the unique electronic structure of these materials, these two points form distinct valleys in the band structure which can be exploited to produce valley polarization. Exciton quantum dynamics are characterized by two fundamental parameters, one of which is the dephasing rate, [gamma], which describes quantum dissipation arising from the interaction of the excitons with their environment (i.e. other excitons, impurities, etc...). This dissertation focuses on measuring the fundamental property of dephasing time (which is inversely proportional to the dephasing rate and homogeneous linewidth) in monolayer WSe2 through the use of two-dimensional coherent spectroscopy. Our measurements have revealed a homogeneous linewidth consistent with dephasing times in the sub-picosecond regime. We also characterize the role of exciton-exciton and exciton-phonon interactions, on the homogeneous linewidth, through excitation density and temperature dependent studies. These studies have revealed strong many-body effects and nonradiative population relaxation as the primary dephasing mechanisms. Microscopic calculations show that in perfect crystalline samples of monolayer TMDCs, the radiative lifetimes are also in the sub-picosecond regime due to the large oscillator strengths inherent in these materials. This result is consistent with the short dephasing times found experimentally.

Book Semiconductor Photonics of Nanomaterials and Quantum Structures

Download or read book Semiconductor Photonics of Nanomaterials and Quantum Structures written by Arash Rahimi-Iman and published by Springer Nature. This book was released on 2021-04-23 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. In addition, a hand-full of useful optical techniques for the characterization of semiconductor quantum structures and materials are addressed. Moreover, nanostructuring methods for the production of low-dimensional systems, which exhibit advantageous properties predominantly due to quantum effects, are summarized. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light–matter interactions, and quantum technologies.

Book Calculations and Simulations of Low Dimensional Materials

Download or read book Calculations and Simulations of Low Dimensional Materials written by Ying Dai and published by John Wiley & Sons. This book was released on 2022-08-05 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculations and Simulations of Low-Dimensional Materials A comprehensive guide to methods for calculating and simulating the properties of low-dimensional materials Two-dimensional materials are those, such as graphene and 2D oxides, whose thickness is so small as to approach the atomic scale. Potential applications for these materials exist in an enormous range of scientific and industrial fields. A previous era of low-dimensional materials focused on direct experimentation to demonstrate the properties, reactions, and potential applications of these materials; however, in recent years, calculation and simulation have been shown to have considerable predictive power, reducing the period between design and deployment of these potentially critical materials. Calculations and Simulations of Low-Dimensional Materials offers the first comprehensive survey of this exciting new approach to low-dimensional materials. It guides readers through the foundational physics and through a range of calculation and simulation methods, each with different predictive capacities. Mastery of these methods will enable readers to narrowly tailor the properties of particular materials towards real-world applications, providing confidence in the underlying mechanics and in the range of possible outcomes. Calculations and Simulations of Low-Dimensional Materials readers will also find: Broad coverage of material properties, including electronic, spin, magnetic, photonic, optical, electrochemical and transport properties Discussion of potential applications in areas such as electronics, spintronics, and valleytronics Examination of further potential applications regarding quantum Hall phase, photonics, optoelectronics, multiferroic, and photocatalysis Calculations and Simulations of Low-Dimensional Materials is a useful reference for materials scientists, electrochemists, inorganic chemists, physical chemists, photochemists, and the libraries that support these professions.

Book Exciton Dynamics in Lead Halide Perovskite Nanocrystals

Download or read book Exciton Dynamics in Lead Halide Perovskite Nanocrystals written by Bernhard Johann Bohn and published by Springer Nature. This book was released on 2021-05-18 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Less than a decade ago, lead halide perovskite semiconductors caused a sensation: Solar cells exhibiting astonishingly high levels of efficiency. Recently, it became possible to synthesize nanocrystals of this material as well. Interestingly; simply by controlling the size and shape of these crystals, new aspects of this material literally came to light. These nanocrystals have proven to be interesting candidates for light emission. In this thesis, the recombination, dephasing and diffusion of excitons in perovskite nanocrystals is investigated using time-resolved spectroscopy. All these dynamic processes have a direct impact on the light-emitting device performance from a technology point of view. However, most importantly, the insights gained from the measurements allowed the author to modify the nanocrystals such that they emitted with an unprecedented quantum yield in the blue spectral range, resulting in the successful implementation of this material as the active layer in an LED. This represents a technological breakthrough, because efficient perovskite light emitters in this wavelength range did not exist before.

Book Excitonic Structure in Atomically Thin Transition Metal Dichalcogenides

Download or read book Excitonic Structure in Atomically Thin Transition Metal Dichalcogenides written by Xiaoxiao Zhang and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We achieve this by applying an in-plane magnetic field, which mixes the bright and spin forbidden dark excitons. Both neutral and charged dark excitonic states have been identified in this fashion, and their energy levels are in good agreement with ab-initio calculations using GW-BSE approach. Moreover, due to the protection from their spin structure, much enhanced emission and valley lifetime were observed for these dark states. These studies directly reveal the excitonic spin manifolds in this prototypical two-dimensional semiconductor and provide a new route to control the optical and valley properties of these systems.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Chi Sin Tang and published by John Wiley & Sons. This book was released on 2023-11-08 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.