Download or read book The Physics of Phonons written by Gyaneshwar P. Srivastava and published by Routledge. This book was released on 2019-07-16 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.
Download or read book Nanoscale Energy Transport and Conversion written by Gang Chen and published by Oxford University Press. This book was released on 2005-03-03 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.
Download or read book Advanced Computational Nanomechanics written by Nuno Silvestre and published by John Wiley & Sons. This book was released on 2015-12-24 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains the latest research advances in computational nanomechanics in one comprehensive volume Covers computational tools used to simulate and analyse nanostructures Includes contributions from leading researchers Covers of new methodologies/tools applied to computational nanomechanics whilst also giving readers the new findings on carbon-based aggregates (graphene, carbon-nanotubes, nanocomposites) Evaluates the impact of nanoscale phenomena in materials
Download or read book Nanophononics written by Zlatan Aksamija and published by CRC Press. This book was released on 2017-11-22 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat in most semiconductor materials, including the traditional group IV elements (Si, Ge, diamond), III–V compounds (GaAs, wide-bandgap GaN), and carbon allotropes (graphene, CNTs), as well as emerging new materials like transition metal dichalcogenides (TMDCs), is stored and transported by lattice vibrations (phonons). Phonon generation through interactions with electrons (in nanoelectronics, power, and nonequilibrium devices) and light (optoelectronics) is the central mechanism of heat dissipation in nanoelectronics. This book focuses on the area of thermal effects in nanostructures, including the generation, transport, and conversion of heat at the nanoscale level. Phonon transport, including thermal conductivity in nanostructured materials, as well as numerical simulation methods, such as phonon Monte Carlo, Green’s functions, and first principles methods, feature prominently in the book, which comprises four main themes: (i) phonon generation/heat dissipation, (i) nanoscale phonon transport, (iii) applications/devices (including thermoelectrics), and (iv) emerging materials (graphene/2D). The book also covers recent advances in nanophononics—the study of phonons at the nanoscale. Applications of nanophononics focus on thermoelectric (TE) and tandem TE/photovoltaic energy conversion. The applications are augmented by a chapter on heat dissipation and self-heating in nanoelectronic devices. The book concludes with a chapter on thermal transport in nanoscale graphene ribbons, covering recent advances in phonon transport in 2D materials. The book will be an excellent reference for researchers and graduate students of nanoelectronics, device engineering, nanoscale heat transfer, and thermoelectric energy conversion. The book could also be a basis for a graduate special topics course in the field of nanoscale heat and energy.
Download or read book Thermoelectric Nanomaterials written by Kunihito Koumoto and published by Springer Science & Business Media. This book was released on 2013-07-20 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also indicates the applications of thermoelectrics expected for the large emerging energy market. This book has a wide appeal and application value for anyone being interested in state-of-the-art thermoelectrics and/or actual viable applications in nanotechnology.
Download or read book Nano Microscale Heat Transfer written by Zhuomin M. Zhang and published by Springer Nature. This book was released on 2020-06-23 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Download or read book Nano scale Heat Transfer in Nanostructures written by Jihong Al-Ghalith and published by Springer. This book was released on 2018-03-06 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces modern atomistic techniques for predicting heat transfer in nanostructures, and discusses the applications of these techniques on three modern topics. The study of heat transport in screw-dislocated nanowires with low thermal conductivity in their bulk form represents the knowledge base needed for engineering thermal transport in advanced thermoelectric and electronic materials, and suggests a new route to lower thermal conductivity that could promote thermoelectricity. The study of high-temperature coating composite materials facilitates the understanding of the role played by composition and structural characterization, which is difficult to approach via experiments. And the understanding of the impact of deformations, such as bending and collapsing on thermal transport along carbon nanotubes, is important as carbon nanotubes, due to their exceptional thermal and mechanical properties, are excellent material candidates in a variety of applications, including thermal interface materials, thermal switches and composite materials.
Download or read book Microscale and Nanoscale Heat Transfer written by C.B. Sobhan and published by CRC Press. This book was released on 2008-06-12 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own re
Download or read book Phonon Transport in Molecular Dynamics Simulations written by Alan J. H. McGaughey and published by Ann Arbor, Mich. : University Microfilms International. This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book High Thermal Conductivity Materials written by Subhash L. Shinde and published by Springer Science & Business Media. This book was released on 2006-01-31 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this book is to cover the basic understanding of thermal conduction mechanisms in various high thermal conductivity materials including diamond, cubic boron nitride, and also the latest material like carbon nanotubes. The book is intended as a good reference book for scientists and engineers involved in addressing thermal management issues in a broad spectrum of industries. Leading researchers from industry and academic institutions who are well known in their areas of expertise have contributed a chapter in the field of their interest.
Download or read book Principles of Heat Transfer in Porous Media written by M. Kaviany and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.
Download or read book Semiconductor Nanowires written by J Arbiol and published by Elsevier. This book was released on 2015-03-31 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. - Explores a selection of advanced materials for semiconductor nanowires - Outlines key techniques for the property assessment and characterization of semiconductor nanowires - Covers a broad range of applications across a number of fields
Download or read book Physics of Surfaces and Interfaces written by Harald Ibach and published by Springer Science & Business Media. This book was released on 2006-11-18 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.
Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.
Download or read book Rhythmic Advantages in Big Data and Machine Learning written by Anirban Bandyopadhyay and published by Springer Nature. This book was released on 2022-01-10 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses various aspects of biophysics. It starts from the popular article on neurobiology to quantum biology and ends up with the consciousness of a human being and in the universe. The authors have covered eight nine different aspects of natural intelligence, starting from time crystal found in the chemical biology to the vibrations and the resonance of proteins. They have covered a wide spectrum of hierarchical communication among different biological systems. Most importantly, authors have taken an utmost care that even school-level students fall in love with biophysics; it is simple and more of a textbook and definitely bring the readers to a world of biology and physics like never before. Most authors are experienced academicians, and they have used lucid and simple language to make the content interesting for the readers.
Download or read book Thermoelectric Materials and Devices written by Lidong Chen and published by Elsevier. This book was released on 2020-09-25 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectric Materials and Devices summarizes the latest research achievements over the past 20 years of thermoelectric material and devices, most notably including new theory and strategies of thermoelectric materials design and the new technology of device integration. The book's author has provided a bridge between the knowledge of basic physical/chemical principles and the fabrication technology of thermoelectric materials and devices, providing readers with research and development strategies for high performance thermoelectric materials and devices. It will be a vital resource for graduate students, researchers and technologists working in the field of energy conversion and the development of thermoelectric devices. - Discusses the new theory and methods of thermoelectric materials design - Combines scientific principles, along with synthesis and fabrication technologies in thermoelectric materials - Presents the design optimization and interface technology for thermoelectric devices - Introduces thermoelectric polymers and organic-inorganic thermoelectric composites
Download or read book Thermal Transport in Low Dimensions written by Stefano Lepri and published by Springer. This book was released on 2016-04-07 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.