EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Performance Enhancement Techniques for Low Power Digital Phase Locked Loops

Download or read book Performance Enhancement Techniques for Low Power Digital Phase Locked Loops written by Amr Elshazly and published by . This book was released on 2012 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Desire for low-power, high performance computing has been at core of the symbiotic union between digital circuits and CMOS scaling. While digital circuit performance improves with device scaling, analog circuits have not gained these benefits. As a result, it has become necessary to leverage increased digital circuit performance to mitigate analog circuit deficiencies in nanometer scale CMOS in order to realize world class analog solutions. In this thesis, both circuit and system enhancement techniques to improve performance of clock generators are discussed. The following techniques were developed: (1) A digital PLL that employs an adaptive and highly efficient way to cancel the effect of supply noise, (2) a supply regulated DPLL that uses low power regulator and improves supply noise rejection, (3) a digital multiplying DLL that obviates the need for high-resolution TDC while achieving sub-picosecond jitter and excellent supply noise immunity, and (4) a high resolution TDC based on a switched ring oscillator, are presented. Measured results obtained from the prototype chips are presented to illustrate the proposed design techniques.

Book Low Noise Low Power Design for Phase Locked Loops

Download or read book Low Noise Low Power Design for Phase Locked Loops written by Feng Zhao and published by Springer. This book was released on 2014-11-25 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces low-noise and low-power design techniques for phase-locked loops and their building blocks. It summarizes the noise reduction techniques for fractional-N PLL design and introduces a novel capacitive-quadrature coupling technique for multi-phase signal generation. The capacitive-coupling technique has been validated through silicon implementation and can provide low phase-noise and accurate I-Q phase matching, with low power consumption from a super low supply voltage. Readers will be enabled to pick one of the most suitable QVCO circuit structures for their own designs, without additional effort to look for the optimal circuit structure and device parameters.

Book Digital Enhancement Techniques for Digital Fractional N Phase Locked Loops

Download or read book Digital Enhancement Techniques for Digital Fractional N Phase Locked Loops written by Cristián Enrique Álvarez-Fontecilla and published by . This book was released on 2021 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase-locked loops (PLLs) are critical components in modern electronics communication systems, where they are used to synthesize local oscillator signals for modulation and demodulation in wireless transceivers. They are also used to clock digital-to-analog converters (DACs), analog-to-digital converters (ADCs), and digital processors. Most PLLs incorporate either analog filters and voltage-controlled oscillators (VCOs) or digital filters and digitally-controlled oscillators (DCOs). The former are called analog PLLs and the latter are called digital PLLs. To date, analog PLLs have the best phase error performance, but digital PLLs have the lowest circuit area and are more compatible with highly-scaled CMOS IC technology. Thus, improving the performance of digital PLLs has been the subject of intensive research for many years. The first chapter of this dissertation presents a multi-rate dynamic element matching (MR-DEM) technique and an adaptive mismatch-noise cancellation (MNC) technique that work together to mitigate spectral breathing in digital PLLs, a problem caused by mismatches among the frequency control elements (FCEs) within the DCO. It presents a theoretical analysis of the techniques, as well as behavioral simulation results that support this analysis. The second chapter of this dissertation presents delta-sigma ([delta][sigma]) frequency-to-digital converter (FDC) all-digital enhancements for FDC-based digital fractional-N PLLs. It describes an enhanced [delta][sigma] FDC architecture that has relaxed timing constraints and reduced phase-frequency detector (PFD) output pulse-span compared to prior-art [delta][sigma] FDCs. It also describes and analyses a [delta][sigma] FDC forward gain calibration technique that reduces the complexity associated with the system's implementation and improves the phase noise performance of PLLs with high loop bandwidths. The third chapter of this dissertation presents an integrated circuit high-performance PLL which implements the MR-DEM and MNC techniques presented in the first chapter. It demonstrates the detrimental effects of the spectral breathing phenomenon, as well as the effectiveness of the MR-DEM and MNC techniques to mitigate this problem.

Book Monolithic Phase Locked Loops and Clock Recovery Circuits

Download or read book Monolithic Phase Locked Loops and Clock Recovery Circuits written by Behzad Razavi and published by John Wiley & Sons. This book was released on 1996-04-18 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phase-locked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise.

Book Phase Locked Loops for Wireless Communications

Download or read book Phase Locked Loops for Wireless Communications written by Donald R. Stephens and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase-Locked Loops for Wireless Communications: Digitial, Analog and Optical Implementations, Second Edition presents a complete tutorial of phase-locked loops from analog implementations to digital and optical designs. The text establishes a thorough foundation of continuous-time analysis techniques and maintains a consistent notation as discrete-time and non-uniform sampling are presented. New to this edition is a complete treatment of charge pumps and the complementary sequential phase detector. Another important change is the increased use of MATLAB®, implemented to provide more familiar graphics and reader-derived phase-locked loop simulation. Frequency synthesizers and digital divider analysis/techniques have been added to this second edition. Perhaps most distinctive is the chapter on optical phase-locked loops that begins with sections discussing components such as lasers and photodetectors and finishing with homodyne and heterodyne loops. Starting with a historical overview, presenting analog, digital, and optical PLLs, discussing phase noise analysis, and including circuits/algorithms for data synchronization, this volume contains new techniques being used in this field. Highlights of the Second Edition: Development of phase-locked loops from analog to digital and optical, with consistent notation throughout; Expanded coverage of the loop filters used to design second and third order PLLs; Design examples on delay-locked loops used to synchronize circuits on CPUs and ASICS; New material on digital dividers that dominate a frequency synthesizer's noise floor. Techniques to analytically estimate the phase noise of a divider; Presentation of optical phase-locked loops with primers on the optical components and fundamentals of optical mixing; Section on automatic frequency control to provide frequency-locking of the lasers instead of phase-locking; Presentation of charge pumps, counters, and delay-locked loops. The Second Edition includes the essential topics needed by wireless, optics, and the traditional phase-locked loop specialists to design circuits and software algorithms. All of the material has been updated throughout the book.

Book Pll Performance  Simulation and Design

Download or read book Pll Performance Simulation and Design written by Dean Banerjee and published by Dog Ear Publishing. This book was released on 2006-08 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for the reader who wishes to gain a solid understanding of Phase Locked Loop architectures and their applications. It provides a unique balance between both theoretical perspectives and practical design trade-offs. Engineers faced with real world design problems will find this book to be a valuable reference providing example implementations, the underlying equations that describe synthesizer behavior, and measured results that will improve confidence that the equations are a reliable predictor of system behavior. New material in the Fourth Edition includes partially integrated loop filter implementations, voltage controlled oscillators, and modulation using the PLL.

Book Performance Optimization Techniques in Analog  Mixed Signal  and Radio Frequency Circuit Design

Download or read book Performance Optimization Techniques in Analog Mixed Signal and Radio Frequency Circuit Design written by Fakhfakh, Mourad and published by IGI Global. This book was released on 2014-10-31 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving the performance of existing technologies has always been a focal practice in the development of computational systems. However, as circuitry is becoming more complex, conventional techniques are becoming outdated and new research methodologies are being implemented by designers. Performance Optimization Techniques in Analog, Mix-Signal, and Radio-Frequency Circuit Design features recent advances in the engineering of integrated systems with prominence placed on methods for maximizing the functionality of these systems. This book emphasizes prospective trends in the field and is an essential reference source for researchers, practitioners, engineers, and technology designers interested in emerging research and techniques in the performance optimization of different circuit designs.

Book A Digital Phase Locked Loop based Signal and Symbol Recovery System for Wireless Channel

Download or read book A Digital Phase Locked Loop based Signal and Symbol Recovery System for Wireless Channel written by Basab Bijoy Purkayastha and published by Springer. This book was released on 2015-01-29 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reports two approaches of implementation of the essential components of a Digital Phase Locked Loop based system for dealing with wireless channels showing Nakagami-m fading. It is mostly observed in mobile communication. In the first approach, the structure of a Digital phase locked loop (DPLL) based on Zero Crossing (ZC) algorithm is proposed. In a modified form, the structure of a DPLL based systems for dealing with Nakagami-m fading based on Least Square Polynomial Fitting Filter is proposed, which operates at moderate sampling frequencies. A sixth order Least Square Polynomial Fitting (LSPF) block and Roots Approximator (RA) for better phase-frequency detection has been implemented as a replacement of Phase Frequency Detector (PFD) and Loop Filter (LF) of a traditional DPLL, which has helped to attain optimum performance of DPLL. The results of simulation of the proposed DPLL with Nakagami-m fading and QPSK modulation is discussed in detail which shows that the proposed method provides better performance than existing systems of similar type.

Book Frequency Acquisition Techniques for Phase Locked Loops

Download or read book Frequency Acquisition Techniques for Phase Locked Loops written by Daniel B. Talbot and published by John Wiley & Sons. This book was released on 2012-10-09 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: How to acquire the input frequency from an unlocked state A phase locked loop (PLL) by itself cannot become useful until it has acquired the applied signal's frequency. Often, a PLL will never reach frequency acquisition (capture) without explicit assistive circuits. Curiously, few books on PLLs treat the topic of frequency acquisition in any depth or detail. Frequency Acquisition Techniques for Phase Locked Loops offers a no-nonsense treatment that is equally useful for engineers, technicians, and managers. Since mathematical rigor for its own sake can degenerate into intellectual "rigor mortis," the author introduces readers to the basics and delivers useful information with clear language and minimal mathematics. With most of the approaches having been developed through years of experience, this completely practical guide explores methods for achieving the locked state in a variety of conditions as it examines: Performance limitations of phase/frequency detector–based phase locked loops The quadricorrelator method for both continuous and sampled modes Sawtooth ramp-and-sample phase detector and how its waveform contains frequency error information that can be extracted The benefits of a self-sweeping, self-extinguishing topology Sweep methods using quadrature mixer-based lock detection The use of digital implementations versus analog Frequency Acquisition Techniques for Phase Locked Loops is an important resource for RF/microwave engineers, in particular, circuit designers; practicing electronics engineers involved in frequency synthesis, phase locked loops, carrier or clock recovery loops, radio-frequency integrated circuit design, and aerospace electronics; and managers wanting to understand the technology of phase locked loops and frequency acquisition assistance techniques or jitter attenuating loops. Errata can be found by visiting the Book Support Site at: http://booksupport.wiley.com

Book Phase Locked Loops for Wireless Communications

Download or read book Phase Locked Loops for Wireless Communications written by Donald R. Stephens and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for the graduate or advanced undergraduate engineer. The primary motivation for writing the text was to present a complete tutorial of phase-locked loops with a consistent notation. As such, it can serve as a textbook in formal classroom instruction, or as a self-study guide for the practicing engineer. A former colleague, Kevin Kreitzer, had suggested that I write a text, with an emphasis on digital phase-locked loops. As modem designers, we were continually receiving requests from other engineers asking for a definitive reference on digital phase-locked loops. There are several good papers in the literature, but there was not a good textbook for either classroom or self-paced study. From my own experience in designing low phase noise synthesizers, I also knew that third-order analog loop design was omitted from most texts. With those requirements, the material in the text seemed to flow naturally. Chapter 1 is the early history of phase-locked loops. I believe that historical knowledge can provide insight to the development and progress of a field, and phase-locked loops are no exception. As discussed in Chapter 1, consumer electronics (color television) prompted a rapid growth in phase-locked loop theory and applications, much like the wireless communications growth today. xiv Preface Although all-analog phase-locked loops are becoming rare, the continuous time nature of analog loops allows a good introduction to phase-locked loop theory.

Book Phase Locking in High Performance Systems

Download or read book Phase Locking in High Performance Systems written by Behzad Razavi and published by Wiley-IEEE Press. This book was released on 2003-02-27 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive coverage of recent developments in phase-locked loop technology The rapid growth of high-speed semiconductor and communication technologies has helped make phase-locked loops (PLLs) an essential part of memories, microprocessors, radio-frequency (RF) transceivers, broadband data communication systems, and other burgeoning fields. Complementing his 1996 Monolithic Phase-Locked Loops and Clock Recovery Circuits (Wiley-IEEE Press), Behzad Razavi now has collected the most important recent writing on PLL into a comprehensive, self-contained look at PLL devices, circuits, and architectures. Phase-Locking in High-Performance Systems: From Devices to Architectures' five original tutorials and eighty-three key papers provide an eminently readable foundation in phase-locked systems. Analog and digital circuit designers will glean a wide range of practical information from the book's . . . * Tutorials dealing with devices, delay-locked loops (DLLs), fractional-N synthesizers, bang-bang PLLs, and simulation of phase noise and jitter * In-depth discussions of passive devices such as inductors, transformers, and varactors * Papers on the analysis of phase noise and jitter in various types of oscillators * Concentrated examinations of building blocks, including the design of oscillators, frequency dividers, and phase/frequency detectors * Articles addressing the problem of clock generation by phase-locking for timing and digital applications, RF synthesis, and the application of phase-locking to clock and data recovery circuits In tandem with its companion volume, Phase-Locking in High-Performance Systems: From Devices to Architectures is a superb reference for anyone working on, or seeking to better understand, this rapidly-developing and increasingly central technology.

Book PHASELOCK TECHNIQUES  1966 REPR 1967

Download or read book PHASELOCK TECHNIQUES 1966 REPR 1967 written by Floyd Martin Gardner and published by . This book was released on 1966 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhanced Phase Locked Loop Structures for Power and Energy Applications

Download or read book Enhanced Phase Locked Loop Structures for Power and Energy Applications written by Masoud Karimi-Ghartema and published by John Wiley & Sons. This book was released on 2014-03-21 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling the gap in the market dedicated to PLL structures for power systems Internationally recognized expert Dr. Masoud Karimi-Ghartemani brings over twenty years of experience working with PLL structures to Enhanced Phase-Locked Loop Structures for Power and Energy Applications, the only book on the market specifically dedicated to PLL architectures as they apply to power engineering. As technology has grown and spread to new devices, PLL has increased in significance for power systems and the devices that connect with the power grid. This book discusses the PLL structures that are directly applicable to power systems using simple language, making it easily digestible for a wide audience of engineers, technicians, and graduate students. Enhanced phase-locked loop (EPLL) has become the most widely utilized architecture over the past decade, and many books lack explanation of the structural differences between PLL and EPLL. This book discusses those differences and also provides detailed instructions on using EPLL for both single-phase applications and three-phase applications. The book’s major topics include: A basic look at PLL and its standard structure A full explanation of EPLL EPLL extensions and modifications Digital implementation of EPLL Extensions of EPLL to three-phase structures Dr. Karimi-Ghartemani provides basic analysis that helps readers understand each of the structures presented without requiring complicated mathematical proofs. His book is filled with illustrated examples and simulations that connect theory to the real world, making Enhanced Phase-Locked Loop Structures for Power and Energy Applications an ideal reference for anyone working with inverters, rectifiers, and related technologies.

Book Design of CMOS Phase Locked Loops

Download or read book Design of CMOS Phase Locked Loops written by Behzad Razavi and published by Cambridge University Press. This book was released on 2020-01-30 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern, pedagogic textbook from leading author Behzad Razavi provides a comprehensive and rigorous introduction to CMOS PLL design, featuring intuitive presentation of theoretical concepts, extensive circuit simulations, over 200 worked examples, and 250 end-of-chapter problems. The perfect text for senior undergraduate and graduate students.

Book Phase Locked Loops

Download or read book Phase Locked Loops written by Woogeun Rhee and published by John Wiley & Sons. This book was released on 2023-12-19 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase-Locked Loops Discover the essential materials for phase-locked loop circuit design, from fundamentals to practical design aspects A phase-locked loop (PLL) is a type of circuit with a range of important applications in telecommunications and computing. It generates an output signal with a controlled relationship to an input signal, such as an oscillator which matches the phases of input and output signals. This is a critical function in coherent communication systems, with the result that the theory and design of these circuits are essential to electronic communications of all kinds. Phase-Locked Loops: System Perspectives and Circuit Design Aspects provides a concise, accessible introduction to PLL design. It introduces readers to the role of PLLs in modern communication systems, the fundamental techniques of phase-lock circuitry, and the possible applications of PLLs in a wide variety of electronic communications contexts. The first book of its kind to incorporate modern architectures and to balance theoretical fundamentals with detailed design insights, this promises to be a must-own text for students and industry professionals. The book also features: Coverage of PLL basics with insightful analysis and examples tailored for circuit designers Applications of PLLs for both wireless and wireline systems Practical circuit design aspects for modern frequency generation, frequency modulation, and clock recovery systems Phase-Locked Loops is essential for graduate students and advanced undergraduates in integrated circuit design, as well researchers and engineers in electrical and computing subjects.

Book Improvement of Phase locked Loops by the Introduction of Nonlinearities

Download or read book Improvement of Phase locked Loops by the Introduction of Nonlinearities written by Benjamin J. Leon and published by . This book was released on 1968 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reported herein is a technique which improves the large signal performance of phase-locked loops. The method consists of replacing the linear loop filter with a nonlinear filter. The technique allows the phase-locked loop system designer considerably more design freedom with respect to phase error linearity, lock range, lock rate range and synchronization time. This is particularly evident for higher order systems. The nonlinear operators used in constructing the nonlinear loop filter are specified in detail for first and second order phase-locked loops. Typical design criteria are used in specifying the operators; however, the extension to any other design criterion is obvious. The methods apply equally well to higher order phase-locked loops once a specific set of design criteria are established. Unlike other techniques used to improve large signal performance of phase-locked loops, the technique discussed is extremely simple to implement. In addition, the technique applies to all types of phase-locked loops independent of the type of phase comparator. Theoretical results and conclusions for first and second order systems are verified by experimental systems constructed on an analog computer. Certain results, which are difficult to determine using analog methods, were obtained with the aid of a digital computer. The experimental data were found to agree very well with those predicted theoretically. (Author).