Download or read book Using R for Principles of Econometrics written by Constantin Colonescu and published by Lulu.com. This book was released on 2017-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
Download or read book Econometric Theory and Practice written by P. C. B. Phillips and published by Cambridge University Press. This book was released on 2006-01-09 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essays in this book explore important theoretical and applied advances in econometrics.
Download or read book Asymptotic Inference for Nearly Non Stationary Time Series written by Isabel Llatas and published by . This book was released on 1987 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Probability Theory and Mathematical Statistics written by B. Grigelionis and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-05-05 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Probability Theory and Mathematical Statistics".
Download or read book A Practitioner s Guide to State and Local Population Projections written by Stanley K. Smith and published by Springer Science & Business Media. This book was released on 2013-12-16 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the methodology and analysis of state and local population projections. It describes the most commonly used data sources and application techniques for four types of projection methods: cohort-component, trend extrapolation, structural models, and microsimulation. It covers the components of population growth, sources of data, the formation of assumptions, the development of evaluation criteria, and the determinants of forecast accuracy. It considers the strengths and weaknesses of various projection methods and pays special attention to the unique problems that characterize small-area projections. The authors provide practical guidance to demographers, planners, market analysts, and others called on to construct state and local population projections. They use many examples and illustrations and present suggestions for dealing with special populations, unique circumstances, and inadequate or unreliable data. They describe techniques for controlling one set of projections to another, for interpolating between time points, for sub-dividing age groups, and for constructing projections of population-related variables (e.g., school enrollment, households). They discuss the role of judgment and the importance of the political context in which projections are made. They emphasize the “utility” of projections, or their usefulness for decision making in a world of competing demands and limited resources. This comprehensive book will provide readers with an understanding not only of the mechanics of the most commonly used population projection methods, but also of the many complex issues affecting their construction, interpretation, evaluation, and use.
Download or read book Biometrika written by D. M. Titterington and published by . This book was released on 2001 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The year 2001 marks the centenary of Biometrika, one of the world's leading academic journals in statistical theory and methodology. In celebration of this, the book brings together two sets of papers from the journal. The first comprises seven specially commissioned articles (authors: D.R. Cox, A.C. Davison, Anthony C. Atkinson and R.A. Bailey, David Oakes, Peter Hall, T.M.F. Smith, and Howell Tong). These articles review the history of the journal and the most important contributions made by appearing in the journal in a number of important areas of statitisical activity, including general theory and methodology, surveys and time sets. In the process the papers describe the general development of statistical science during the twentieth century. The second group of ten papers are a selection of particularly seminal articles form the journal's first hundred years. The book opens with an introduction by the editors Professor D.M. Titterington and Sir David Cox.
Download or read book Developments in Time Series Analysis written by T. Subba Rao and published by CRC Press. This book was released on 1993-07-01 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains 27 papers, written by time series analysts, dealing with statistical theory, methodology and applications. The emphasis is on the recent developments in the analysis of linear, onlinear (non-Gaussian), stationary and nonstationary time series. The topics include cointegration, estimation and asymptotic theory, Kalman filtering, nonparametric statistical inference, long memory models, nonlinear models, spectral analysis of stationary and nonstationary processes. Quite a number of papers are devoted to modelling and analysis of real time series, and the econometricians, mathematical statisticians, communications engineers and scientists who use time series techniques and Fourier analysis should find the papers in this volume useful.
Download or read book Time Series Analysis Methods and Applications written by and published by Elsevier. This book was released on 2012-05-18 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas
Download or read book Statistics in Industry written by Ravindra Khattree and published by Gulf Professional Publishing. This book was released on 2003-07-18 with total page 1222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an exposition of topics in industrial statistics. It serves as a reference for researchers in industrial statistics/industrial engineering and a source of information for practicing statisticians/industrial engineers. A variety of topics in the areas of industrial process monitoring, industrial experimentation, industrial modelling and data analysis are covered and are authored by leading researchers or practitioners in the particular specialized topic. Targeting the audiences of researchers in academia as well as practitioners and consultants in industry, the book provides comprehensive accounts of the relevant topics. In addition, whenever applicable ample data analytic illustrations are provided with the help of real world data.
Download or read book Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Download or read book Statistical Methods in the Atmospheric Sciences written by Daniel S. Wilks and published by Elsevier. This book was released on 1995-03-01 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces and explains the statistical methods used to describe, analyze, test, and forecast atmospheric data. It will be useful to students, scientists, and other professionals who seek to make sense of the scientific literature in meteorology, climatology, or other geophysical disciplines, or to understand and communicate what their atmospheric data sets have to say. The book includes chapters on exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, time(series analysis, and multivariate data analysis. Worked examples, exercises, and illustrations facilitate understanding of the material; an extensive and up-to-date list of references allows the reader to pursue selected topics in greater depth.Key Features* Presents and explains techniques used in atmospheric data summarization, analysis, testing, and forecasting* Includes extensive and up-to-date references* Features numerous worked examples and exercises* Contains over 130 illustrations
Download or read book Advanced Statistical Methods in Data Science written by Ding-Geng Chen and published by Springer. This book was released on 2016-11-30 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences.
Download or read book World Congress of Medical Physics and Biomedical Engineering 2006 written by Sun I. Kim and published by Springer Science & Business Media. This book was released on 2007-07-05 with total page 4361 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings of the World Congress 2006, the fourteenth conference in this series, offer a strong scientific program covering a wide range of issues and challenges which are currently present in Medical physics and Biomedical Engineering. About 2,500 peer reviewed contributions are presented in a six volume book, comprising 25 tracks, joint conferences and symposia, and including invited contributions from well known researchers in this field.
Download or read book Longitudinal Structural Equation Modeling written by Jason T. Newsom and published by Routledge. This book was released on 2015-06-19 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive resource reviews structural equation modeling (SEM) strategies for longitudinal data to help readers see which modeling options are available for which hypotheses. The author demonstrates how SEM is related to other longitudinal data techniques throughout. By exploring connections between models, readers gain a better understanding of when to choose one analysis over another. The book explores basic models to sophisticated ones including the statistical and conceptual underpinnings that are the building blocks of the analyses. Accessibly written, research examples from the behavioral and social sciences and results interpretations are provided throughout. The emphasis is on concepts and practical guidance for applied research rather than on mathematical proofs. New terms are highlighted and defined in the glossary. Figures are included for every model along with detailed discussions of model specification and implementation issues. Each chapter also includes examples of each model type, comment sections that provide practical guidance, model extensions, and recommended readings. Highlights include: Covers the major SEM approaches to longitudinal analysis in one resource. Explores connections between longitudinal SEM models to enhance integration. Numerous examples that help readers match research questions to appropriate analyses and interpret results. Reviews practical issues related to model specification and estimation to reinforce connections. Analyzes continuous and discrete (binary and ordinal) variables throughout for breadth not found in other sources. Reviews key SEM concepts for those who need a refresher (Ch. 1). Emphasizes how to apply and interpret each model through realistic data examples. Provides the book’s data sets at www.longitudinalsem.com along with the Mplus and R-lavaan syntax used to generate the results. Introduces the LISREL notation system used throughout (Appendix A). The chapters can be read out of order but it is best to read chapters 1 – 4 first because most of the later chapters refer back to them. The book opens with a review of latent variables and analysis of binary and ordinal variables. Chapter 2 applies this information to assessing longitudinal measurement invariance. SEM tests of dependent means and proportions over time points are explored in Chapter 3, and stability and change, difference scores, and lagged regression are covered in Chapter 4. The remaining chapters are each devoted to one major type of longitudinal SEM -- repeated measures analysis models, full cross-lagged panel models and simplex models, modeling stability with state-trait models, linear and nonlinear growth curve models, latent difference score models, latent transition analysis, time series analysis, survival analysis, and attrition. Missing data is discussed in the context of many of the preceding models in Chapter 13. Ideal for graduate courses on longitudinal (data) analysis, advanced SEM, longitudinal SEM, and/or advanced data (quantitative) analysis taught in the behavioral, social, and health sciences, this text also appeals to researchers in these fields. Intended for those without an extensive math background, prerequisites include familiarity with basic SEM. Matrix algebra is avoided in all but a few places.
Download or read book Design Decisions under Uncertainty with Limited Information written by Efstratios Nikolaidis and published by CRC Press. This book was released on 2011-02-18 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's business environment involves design decisions with significant uncertainty. To succeed, decision-makers should replace deterministic methods with a risk-based approach that accounts for the decision maker‘s risk tolerance. In many problems, it is impractical to collect data because rare or one-time events are involved. Therefore, we need a
Download or read book The Analysis of Time Series written by Chris Chatfield and published by CRC Press. This book was released on 2016-03-30 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented interesting new data sets. The sixth edition is no exception. It provides an accessible, comprehensive introduction to the theory and practice of time series analysis. The treatment covers a wide range of topics, including ARIMA probability models, forecasting methods, spectral analysis, linear systems, state-space models, and the Kalman filter. It also addresses nonlinear, multivariate, and long-memory models. The author has carefully updated each chapter, added new discussions, incorporated new datasets, and made those datasets available for download from www.crcpress.com. A free online appendix on time series analysis using R can be accessed at http://people.bath.ac.uk/mascc/TSA.usingR.doc. Highlights of the Sixth Edition: A new section on handling real data New discussion on prediction intervals A completely revised and restructured chapter on more advanced topics, with new material on the aggregation of time series, analyzing time series in finance, and discrete-valued time series A new chapter of examples and practical advice Thorough updates and revisions throughout the text that reflect recent developments and dramatic changes in computing practices over the last few years The analysis of time series can be a difficult topic, but as this book has demonstrated for two-and-a-half decades, it does not have to be daunting. The accessibility, polished presentation, and broad coverage of The Analysis of Time Series make it simply the best introduction to the subject available.
Download or read book Monthly Weather Review written by and published by . This book was released on 1981 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt: