EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Parallel Programming in C with MPI and OpenMP

Download or read book Parallel Programming in C with MPI and OpenMP written by Michael Jay Quinn and published by McGraw-Hill Education. This book was released on 2004 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: The era of practical parallel programming has arrived, marked by the popularity of the MPI and OpenMP software standards and the emergence of commodity clusters as the hardware platform of choice for an increasing number of organizations. This exciting new book,Parallel Programming in C with MPI and OpenMPaddresses the needs of students and professionals who want to learn how to design, analyze, implement, and benchmark parallel programs in C using MPI and/or OpenMP. It introduces a rock-solid design methodology with coverage of the most important MPI functions and OpenMP directives. It also demonstrates, through a wide range of examples, how to develop parallel programs that will execute efficiently on today’s parallel platforms. If you are an instructor who has adopted the book and would like access to the additional resources, please contact your local sales rep. or Michelle Flomenhoft at: [email protected].

Book Parallel Programming in OpenMP

Download or read book Parallel Programming in OpenMP written by Rohit Chandra and published by Morgan Kaufmann. This book was released on 2001 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software -- Programming Techniques.

Book Using OpenMP

    Book Details:
  • Author : Barbara Chapman
  • Publisher : MIT Press
  • Release : 2007-10-12
  • ISBN : 0262533022
  • Pages : 378 pages

Download or read book Using OpenMP written by Barbara Chapman and published by MIT Press. This book was released on 2007-10-12 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.

Book Introduction to Parallel Programming

Download or read book Introduction to Parallel Programming written by Subodh Kumar and published by Cambridge University Press. This book was released on 2022-07-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern computer science, there exists no truly sequential computing system; and most advanced programming is parallel programming. This is particularly evident in modern application domains like scientific computation, data science, machine intelligence, etc. This lucid introductory textbook will be invaluable to students of computer science and technology, acting as a self-contained primer to parallel programming. It takes the reader from introduction to expertise, addressing a broad gamut of issues. It covers different parallel programming styles, describes parallel architecture, includes parallel programming frameworks and techniques, presents algorithmic and analysis techniques and discusses parallel design and performance issues. With its broad coverage, the book can be useful in a wide range of courses; and can also prove useful as a ready reckoner for professionals in the field.

Book Using MPI

    Book Details:
  • Author : William Gropp
  • Publisher : MIT Press
  • Release : 1999
  • ISBN : 9780262571326
  • Pages : 410 pages

Download or read book Using MPI written by William Gropp and published by MIT Press. This book was released on 1999 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors introduce the core function of the Message Printing Interface (MPI). This edition adds material on the C++ and Fortran 90 binding for MPI.

Book Parallel Programming with MPI

Download or read book Parallel Programming with MPI written by Peter Pacheco and published by Morgan Kaufmann. This book was released on 1997 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.

Book Patterns for Parallel Programming

Download or read book Patterns for Parallel Programming written by Timothy G. Mattson and published by Pearson Education. This book was released on 2004-09-15 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.

Book Parallel Programming

    Book Details:
  • Author : Bertil Schmidt
  • Publisher : Morgan Kaufmann
  • Release : 2017-11-20
  • ISBN : 0128044861
  • Pages : 418 pages

Download or read book Parallel Programming written by Bertil Schmidt and published by Morgan Kaufmann. This book was released on 2017-11-20 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors' open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. - Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ - Contains numerous practical parallel programming exercises - Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program - Features an example-based teaching of concept to enhance learning outcomes

Book Using OpenCL

    Book Details:
  • Author : Janusz Kowalik
  • Publisher : IOS Press
  • Release : 2012
  • ISBN : 1614990298
  • Pages : 312 pages

Download or read book Using OpenCL written by Janusz Kowalik and published by IOS Press. This book was released on 2012 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Parallel Programming Using C

Download or read book Parallel Programming Using C written by Gregory V. Wilson and published by MIT Press. This book was released on 1996-07-08 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.

Book Programming Massively Parallel Processors

Download or read book Programming Massively Parallel Processors written by David B. Kirk and published by Newnes. This book was released on 2012-12-31 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Book Introduction to High Performance Scientific Computing

Download or read book Introduction to High Performance Scientific Computing written by Victor Eijkhout and published by Lulu.com. This book was released on 2010 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Ananth Grama and published by Pearson Education. This book was released on 2003 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.

Book Parallel Programming with OpenACC

Download or read book Parallel Programming with OpenACC written by Rob Farber and published by Newnes. This book was released on 2016-10-14 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. - Presents the simplest way to leverage GPUs to achieve application speedups - Shows how OpenACC works, including working examples that can be adapted for application needs - Allows readers to download source code and slides from the book's companion web page

Book Using Advanced MPI

    Book Details:
  • Author : William Gropp
  • Publisher : MIT Press
  • Release : 2014-11-07
  • ISBN : 0262527634
  • Pages : 391 pages

Download or read book Using Advanced MPI written by William Gropp and published by MIT Press. This book was released on 2014-11-07 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to advanced features of MPI, reflecting the latest version of the MPI standard, that takes an example-driven, tutorial approach. This book offers a practical guide to the advanced features of the MPI (Message-Passing Interface) standard library for writing programs for parallel computers. It covers new features added in MPI-3, the latest version of the MPI standard, and updates from MPI-2. Like its companion volume, Using MPI, the book takes an informal, example-driven, tutorial approach. The material in each chapter is organized according to the complexity of the programs used as examples, starting with the simplest example and moving to more complex ones. Using Advanced MPI covers major changes in MPI-3, including changes to remote memory access and one-sided communication that simplify semantics and enable better performance on modern hardware; new features such as nonblocking and neighborhood collectives for greater scalability on large systems; and minor updates to parallel I/O and dynamic processes. It also covers support for hybrid shared-memory/message-passing programming; MPI_Message, which aids in certain types of multithreaded programming; features that handle very large data; an interface that allows the programmer and the developer to access performance data; and a new binding of MPI to Fortran.

Book Programming Models for Parallel Computing

Download or read book Programming Models for Parallel Computing written by Pavan Balaji and published by MIT Press. This book was released on 2015-11-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng

Book Parallel and High Performance Computing

Download or read book Parallel and High Performance Computing written by Robert Robey and published by Simon and Schuster. This book was released on 2021-08-24 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code