EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Oxidative Coupling of Methane Followed by Oligomerization to Liquids

Download or read book Oxidative Coupling of Methane Followed by Oligomerization to Liquids written by Thomas Serres and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Les importantes réserves de gaz naturel - avérées ou potentielles - font de cet hydrocarbure un substitut plausible du pétrole pour la production d'hydrocarbures liquides. Cependant la plupart des réserves de gaz découvertes à l'heure actuelle sont de taille réduite et dispersées loin des sites de transformation ou de consommation. Le couplage du réformage (RM) et du couplage oxydant du méthane (OCM) dans un réacteur à microcanaux permettrait de rendre viable l'exploitation de ces réserves grâce à des coûts opératoires de transformation du gaz naturel réduits par rapport aux usines actuelles. De plus, l'utilisation de ce type de réacteurs compacts réduirait fortement la taille des usines de transformation du méthane. L'intégration de réactions de réformage du méthane en microréacteur a déjà été étudiée et des systèmes stables et performants ont été développés. En revanche, aucune étude n'a été faite sur le comportement de l'OCM dans ces réacteurs. Il a cependant été prouvé que ce procédé est basé sur un équilibre sensible entre réactions de surface et réactions en phase gazeuse. Or l'efficacité thermique des microréacteurs est liée au très grand rapport surface sur volume de gaz au sein des microcanaux par rapport à des réacteurs en lit fixe. L'étude présente de l'influence de la conception des réacteurs sur les performances du système OCM montre qu'une contribution trop importante de la surface catalytique est négative pour l'activité et la sélectivité des catalyseurs OCM. La comparaison des catalyseurs en poudre ou en revêtement a montré que seule la géométrie des réacteurs - soit le rapport volume de phase gaz sur surface catalytique (rapport V/S) - avait une influence sur les performances du système catalyseur + réacteur. L'utilisation de ce paramètre montre en effet que le type du réacteur choisi n'a aucun effet sur les performances de la réaction d'OCM à rapport V/S constant. L'influence positive d'une augmentation du rapport V/S sur les performances du système est en revanche limitée à cause de la faible durée de vie des radicaux en jeu dans l'OCM. L'utilisation du paramètre V/S a en revanche permis d'estimer la géométrie idéale des canaux d'un microréacteur à travers leur diamètre. Deux types très distincts de catalyseurs OCM ont été sélectionnés pour cette étude, conduisant soit à une activité réduite mais une plus grande sélectivité en éthylène soit l'inverse selon la composition et la structure/texture de ces catalyseurs. Au maximum de leurs productivités en éthylène respectives, le catalyseur au lanthane présente une productivité quatre fois plus importante que le catalyseur basé sur le système Mn-W-Na. La différence d'activité des deux catalyseurs étudiés peut s'expliquer par la densité en site actifs de chaque catalyseur. Celui au lanthane est uniquement constitué d'éléments actifs (La, Sr and Ca) contrairement au catalyseur Mn-W-Na dont la surface est en partie constituée de silice inerte. De plus le système Mn-W-Na présente des surfaces spécifiques en général cinq fois inférieures au catalyseur au lanthane. Cependant, les sites actifs du catalyseur au lanthane ne sont pas tous sélectifs envers la production de C2 et sont en revanche très actifs envers la production de précurseurs de COx. Un catalyseur OCM idéal associerait donc la densité de sites actifs du catalyseur au lanthane avec la sélectivité des systèmes Mn-W-Na. La concentration en éléments actifs pour ce système Mn-W-Na a donc été augmentée progressivement. Il s'est avérée que cette augmentation améliorait l'activité de ces catalyseurs par rapport à ceux référencés dans la littérature mais que l'amélioration était limitée au-delà d'une certaine concentration. deux fois inférieure à celle du catalyseur au lanthane soit quatre fois plus importante que le catalyseur référencé dans la littérature [etc...].

Book Small Scale Gas to Liquid Fuel Synthesis

Download or read book Small Scale Gas to Liquid Fuel Synthesis written by Nick Kanellopoulos and published by CRC Press. This book was released on 2015-02-23 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is estimated that a large fraction of natural gas reserves are found in locations from where transport is not economical. If these isolated natural gas reserves could be converted to synthetic fuels, they would generate around 250 billion barrels of synthetic oil-a quantity equal to one-third of the Middle East's proven oil reserves. Small-Scale

Book Methane Conversion by Oxidative Processes

Download or read book Methane Conversion by Oxidative Processes written by Wolf and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Book Methane Conversion by Oxidative Processes

Download or read book Methane Conversion by Oxidative Processes written by Eduardo E. Wolf and published by Springer. This book was released on 1992 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Book Small Scale Gas to Liquid Fuel Synthesis

Download or read book Small Scale Gas to Liquid Fuel Synthesis written by Nick Kanellopoulos and published by CRC Press. This book was released on 2015-02-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is estimated that a large fraction of natural gas reserves are found in locations from where transport is not economical. If these isolated natural gas reserves could be converted to synthetic fuels, they would generate around 250 billion barrels of synthetic oil—a quantity equal to one-third of the Middle East’s proven oil reserves. Small-Scale Gas to Liquid Fuel Synthesis explores next-generation technologies geared toward overcoming the significant cost and technical barriers prohibiting the extensive use of conventional gas to liquid (GTL) processes for the exploitation of small and/or isolated natural gas reservoirs. The book highlights key research activities in the framework of two large European projects—Innovative Catalytic Technologies & Materials for Next Gas to Liquid Processes (NEXT-GTL) and Oxidative Coupling of Methane followed by Oligomerization to Liquids (OCMOL)—examining novel technical developments that reduce the costs associated with air fractioning and syngas production. Featuring contributions from internationally respected experts, Small-Scale Gas to Liquid Fuel Synthesis discusses innovative GTL technologies based on recent advances in catalytic membrane systems, reaction engineering, and process design. The book provides academic and industrial researchers with a concise presentation of the current state of the art of low-cost, energy-efficient GTL technologies for small-scale applications.

Book Oxidative Coupling of Methane Over Li MgO Catalyst

Download or read book Oxidative Coupling of Methane Over Li MgO Catalyst written by Saeed M. S. Al-Zahrani and published by . This book was released on 1994 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Catalysis and Kinetics of Oxidative Coupling of Methane

Download or read book Catalysis and Kinetics of Oxidative Coupling of Methane written by Jeng-Shiang Tsaih and published by . This book was released on 1993 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Catalysts for the Oxidative Coupling of Methane

Download or read book Catalysts for the Oxidative Coupling of Methane written by Stefanus Johannes Korf and published by . This book was released on 1990 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Catalytic Oxidative Coupling of Methane to C2 Hydrocarbon

Download or read book Catalytic Oxidative Coupling of Methane to C2 Hydrocarbon written by Mohd Ridzuan Nordin and published by . This book was released on 1989 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Oxidative Coupling of Methane Over La09  Sr01  O14  5 Catalyst

Download or read book Oxidative Coupling of Methane Over La09 Sr01 O14 5 Catalyst written by Biren Dhirendra Ajmera and published by . This book was released on 1995 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Investigation of the Catalytic Oxidative Coupling of Methane

Download or read book An Investigation of the Catalytic Oxidative Coupling of Methane written by S. C. Tsang and published by . This book was released on 1990 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methane Conversion

Download or read book Methane Conversion written by D.M. Bibby and published by Elsevier. This book was released on 1988-03-01 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume comprises the invited plenary lectures, contributed and poster papers presented at a symposium organised to mark the successful inauguration of the world's first commercial plant for production of gasoline from natural gas, based on the Mobil methanol-to-gasoline process. The objectives of the Symposium were to present both fundamental research and engineering aspects of the development and commercialization of gas-to-gasoline processes. These include steam reforming, methanol synthesis and methanol-to-gasoline. Possible alternative processes e.g. MOGD, Fischer-Tropsch synthesis of hydrocarbons, and the direct conversion of methane to higher hydrocarbons were also considered.The papers in this volume provide a valuable and extremely wide-ranging overview of current research into the various options for natural gas conversion, giving a detailed description of the gas-to-gasoline process and plant. Together, they represent a unique combination of fundamental surface chemistry catalyst characterization, reaction chemistry and engineering scale-up and commercialization.

Book Catalysts for the Oxidative Coupling of Methane

Download or read book Catalysts for the Oxidative Coupling of Methane written by Shoumin Xu and published by . This book was released on 1994 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Study of Catalysts for the Oxidative Coupling of Methane

Download or read book A Study of Catalysts for the Oxidative Coupling of Methane written by Y. Tsuru and published by . This book was released on 1990 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling of Oxidative Coupling of Methane to Ethylene with Chemical Equilibria

Download or read book Modeling of Oxidative Coupling of Methane to Ethylene with Chemical Equilibria written by Kritchart Wongwailikhit and published by . This book was released on 2013 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Equilibrium models were constructed for Oxidative Coupling of Methane reaction (OCM) with three catalysts, i.e. Mn/Na2WO4/SiO2, La2O3/CaO and PbO/Al2O3. The models were verified under operating temperatures of 650-900oC and methane to oxygen feed ratio 3-10. The compositions of methane, ethane, ethylene, hydrogen, water and carbon oxides in the effluent of each model were compared with the corresponding experiments. The suitable equilibrium model for both Mn/Na2WO4/SiO2 and PbO/Al2O3 was the trio-equilibrium reaction model, consisting of OCM and oxidative dehydrogenation model, combustion model, and hydrocracking model. While, the duo-equilibrium reaction model, containing OCM and oxidative dehydrogenation model, and combustion model, was appropriate for La2O3/CaO catalyst. The accuracy of all equilibrium models could be improved by specifying the desired ethane yield. In addition, based on the reactor performance, i.e. conversion, and yields, the limitation of the manipulated equilibrium models was evaluated within the operating temperatures and the methane to oxygen ratio above. Finally, the equilibrium models, especially the duo-equilibrium model, could be employed to predict the reactor performance containing other OCM catalysts.

Book Natural Gas Conversion V

Download or read book Natural Gas Conversion V written by A. Parmaliana and published by Elsevier. This book was released on 1998-09-17 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: On January 1988, the ascertained and economically accessible reserves of Natural Gas (NG) amounted to over 144,000 billion cubic meters worldwide, corresponding to 124 billion tons of oil equivalents (comparable with the liquid oil reserves, which are estimated to be 138 billion TOE). It is hypothesized that the volume of NG reserve will continue to grow at the same rate of the last decade. Forecasts on production indicate a potential increase from about 2,000 billion cubic meters in 1990 to not more than 3,300 billion cubic meters in 2010, even in a high economic development scenario. NG consumption represents only one half of oil: 1.9 billion TOE/y as compared to 3.5 of oil. Consequently, in the future gas will exceed oil as a carbon atom source. In the future the potential for getting energetic vectors or petrochemicals from NG will continue to grow.The topics covered in Natural Gas Conversion V reflect the large global R&D effort to look for new and economic ways of NG exploitation. These range from the direct conversion of methane and light paraffins to the indirect conversion through synthesis gas to fuels and chemicals. Particularly underlined and visible are the technologies already commercially viable.These proceedings prove that mature and technologically feasible processes for natural gas conversion are already available and that new and improved catalytic approaches are currently developing, the validity and feasibility of which will soon be documented. This is an exciting area of modern catalysis, which will certainly open novel and rewarding perspectives for the chemical, energy and petrochemical industries.