EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimization with Sparsity Inducing Penalties

Download or read book Optimization with Sparsity Inducing Penalties written by Francis Bach and published by . This book was released on 2012 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. Optimization with Sparsity-Inducing Penalties presents optimization tools and techniques dedicated to such sparsity-inducing penalties from a general perspective. It covers proximal methods, block-coordinate descent, reweighted ?2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provides an extensive set of experiments to compare various algorithms from a computational point of view. The presentation of Optimization with Sparsity-Inducing Penalties is essentially based on existing literature, but the process of constructing a general framework leads naturally to new results, connections and points of view. It is an ideal reference on the topic for anyone working in machine learning and related areas.

Book Optimization with Sparsity Inducing Penalties

Download or read book Optimization with Sparsity Inducing Penalties written by Francis Bach and published by . This book was released on 2011-12-23 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. Optimization with Sparsity-Inducing Penalties presents optimization tools and techniques dedicated to such sparsity-inducing penalties from a general perspective. It covers proximal methods, block-coordinate descent, reweighted ?2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provides an extensive set of experiments to compare various algorithms from a computational point of view. The presentation of Optimization with Sparsity-Inducing Penalties is essentially based on existing literature, but the process of constructing a general framework leads naturally to new results, connections and points of view. It is an ideal reference on the topic for anyone working in machine learning and related areas.

Book Learning with Submodular Functions

Download or read book Learning with Submodular Functions written by Francis Bach and published by . This book was released on 2013 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, we show how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance. By listing many examples of submodular functions, we review various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions.

Book Regularization  Optimization  Kernels  and Support Vector Machines

Download or read book Regularization Optimization Kernels and Support Vector Machines written by Johan A.K. Suykens and published by CRC Press. This book was released on 2014-10-23 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso Discusses multi-layer SVMs Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing Describes graph-based regularization methods for single- and multi-task learning Considers regularized methods for dictionary learning and portfolio selection Addresses non-negative matrix factorization Examines low-rank matrix and tensor-based models Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.

Book Statistical Learning with Sparsity

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Book Estimation and Testing Under Sparsity

Download or read book Estimation and Testing Under Sparsity written by Sara van de Geer and published by Springer. This book was released on 2016-06-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.

Book Proximal Algorithms

Download or read book Proximal Algorithms written by Neal Parikh and published by Now Pub. This book was released on 2013-11 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proximal Algorithms discusses proximal operators and proximal algorithms, and illustrates their applicability to standard and distributed convex optimization in general and many applications of recent interest in particular. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Proximal Algorithms discusses different interpretations of proximal operators and algorithms, looks at their connections to many other topics in optimization and applied mathematics, surveys some popular algorithms, and provides a large number of examples of proximal operators that commonly arise in practice.

Book High Dimensional Optimization and Probability

Download or read book High Dimensional Optimization and Probability written by Ashkan Nikeghbali and published by Springer Nature. This book was released on 2022-08-04 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces. The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book Optimization and Applications

Download or read book Optimization and Applications written by Nicholas Olenev and published by Springer Nature. This book was released on 2023-01-02 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 13th International Conference on Optimization and Applications, OPTIMA 2022, held in Petrovac, Montenegro, during September 26–30, 2022. The 17 full papers and presented were carefully reviewed and selected from 43 submissions. They were organized into the following as follows: mathematical programming; global optimization; discrete and combinatorial optimization; optimal control; optimization and data analysis; and game theory and mathematical economics.

Book Convex Optimization Algorithms

Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Book Mathematical Analysis and Applications

Download or read book Mathematical Analysis and Applications written by Themistocles M. Rassias and published by Springer Nature. This book was released on 2019-12-12 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: An international community of experts scientists comprise the research and survey contributions in this volume which covers a broad spectrum of areas in which analysis plays a central role. Contributions discuss theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. This volume is useful to graduate students and researchers working in mathematics, physics, engineering, and economics.

Book Computational Mathematics and Variational Analysis

Download or read book Computational Mathematics and Variational Analysis written by Nicholas J. Daras and published by Springer Nature. This book was released on 2020-06-06 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.

Book Artificial Intelligence and Causal Inference

Download or read book Artificial Intelligence and Causal Inference written by Momiao Xiong and published by CRC Press. This book was released on 2022-02-03 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and Causal Inference address the recent development of relationships between artificial intelligence (AI) and causal inference. Despite significant progress in AI, a great challenge in AI development we are still facing is to understand mechanism underlying intelligence, including reasoning, planning and imagination. Understanding, transfer and generalization are major principles that give rise intelligence. One of a key component for understanding is causal inference. Causal inference includes intervention, domain shift learning, temporal structure and counterfactual thinking as major concepts to understand causation and reasoning. Unfortunately, these essential components of the causality are often overlooked by machine learning, which leads to some failure of the deep learning. AI and causal inference involve (1) using AI techniques as major tools for causal analysis and (2) applying the causal concepts and causal analysis methods to solving AI problems. The purpose of this book is to fill the gap between the AI and modern causal analysis for further facilitating the AI revolution. This book is ideal for graduate students and researchers in AI, data science, causal inference, statistics, genomics, bioinformatics and precision medicine. Key Features: Cover three types of neural networks, formulate deep learning as an optimal control problem and use Pontryagin’s Maximum Principle for network training. Deep learning for nonlinear mediation and instrumental variable causal analysis. Construction of causal networks is formulated as a continuous optimization problem. Transformer and attention are used to encode-decode graphics. RL is used to infer large causal networks. Use VAE, GAN, neural differential equations, recurrent neural network (RNN) and RL to estimate counterfactual outcomes. AI-based methods for estimation of individualized treatment effect in the presence of network interference.

Book Sparse Modeling for Image and Vision Processing

Download or read book Sparse Modeling for Image and Vision Processing written by Julien Mairal and published by Now Publishers. This book was released on 2014-12-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Book Practical Applications of Sparse Modeling

Download or read book Practical Applications of Sparse Modeling written by Irina Rish and published by MIT Press. This book was released on 2014-09-12 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional data sets. This collection describes key approaches in sparse modeling, focusing on its applications in such fields as neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--Jacket.

Book Convex Optimization

    Book Details:
  • Author : Sébastien Bubeck
  • Publisher : Foundations and Trends (R) in Machine Learning
  • Release : 2015-11-12
  • ISBN : 9781601988607
  • Pages : 142 pages

Download or read book Convex Optimization written by Sébastien Bubeck and published by Foundations and Trends (R) in Machine Learning. This book was released on 2015-11-12 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.

Book Big Data in Omics and Imaging

Download or read book Big Data in Omics and Imaging written by Momiao Xiong and published by CRC Press. This book was released on 2017-12-01 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Omics and Imaging: Association Analysis addresses the recent development of association analysis and machine learning for both population and family genomic data in sequencing era. It is unique in that it presents both hypothesis testing and a data mining approach to holistically dissecting the genetic structure of complex traits and to designing efficient strategies for precision medicine. The general frameworks for association analysis and machine learning, developed in the text, can be applied to genomic, epigenomic and imaging data. FEATURES Bridges the gap between the traditional statistical methods and computational tools for small genetic and epigenetic data analysis and the modern advanced statistical methods for big data Provides tools for high dimensional data reduction Discusses searching algorithms for model and variable selection including randomization algorithms, Proximal methods and matrix subset selection Provides real-world examples and case studies Will have an accompanying website with R code The book is designed for graduate students and researchers in genomics, bioinformatics, and data science. It represents the paradigm shift of genetic studies of complex diseases– from shallow to deep genomic analysis, from low-dimensional to high dimensional, multivariate to functional data analysis with next-generation sequencing (NGS) data, and from homogeneous populations to heterogeneous population and pedigree data analysis. Topics covered are: advanced matrix theory, convex optimization algorithms, generalized low rank models, functional data analysis techniques, deep learning principle and machine learning methods for modern association, interaction, pathway and network analysis of rare and common variants, biomarker identification, disease risk and drug response prediction.