Download or read book Optimization of Weighted Monte Carlo Methods written by Gennadii A. Mikhailov and published by Springer. This book was released on 1992-02-13 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is based on the munerical realization of natural or artificial models of the phenomena under considerations. In contrast to classical computing methods the Monte Carlo efficiency depends weakly on the dimen sion and geometric details of the problem. The method is used for solving complex problems of the radiation transfer theory, turbulent diffusion, chemi cal kinetics, theory of rarefied gases, diffraction of waves on random surfaces, etc. The Monte Carlo method is especially effective when using multi-processor computing systems which allow many independent statistical experiments to be simulated simultaneously. The weighted Monte Carlo estimates are constructed in order to diminish errors and to obtain dependent estimates for the calculated functionals for different values of parameters of the problem, i.e., to improve the functional dependence. In addition, the weighted estimates make it possible to evaluate special functionals, for example, the derivatives with respect to the parameters. There are many works concerned with the development of the weighted estimates. In Chap. 1 we give the necessary information about these works and present a set of illustrations. The rest of the book is devoted to the solution of a series of mathematical problems related to the optimization of the weighted Monte Carlo estimates.
Download or read book Optimization of Weighted Monte Carlo Methods written by Gennadii A. Mikhailov and published by Springer. This book was released on 1992-02-13 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is based on the munerical realization of natural or artificial models of the phenomena under considerations. In contrast to classical computing methods the Monte Carlo efficiency depends weakly on the dimen sion and geometric details of the problem. The method is used for solving complex problems of the radiation transfer theory, turbulent diffusion, chemi cal kinetics, theory of rarefied gases, diffraction of waves on random surfaces, etc. The Monte Carlo method is especially effective when using multi-processor computing systems which allow many independent statistical experiments to be simulated simultaneously. The weighted Monte Carlo estimates are constructed in order to diminish errors and to obtain dependent estimates for the calculated functionals for different values of parameters of the problem, i.e., to improve the functional dependence. In addition, the weighted estimates make it possible to evaluate special functionals, for example, the derivatives with respect to the parameters. There are many works concerned with the development of the weighted estimates. In Chap. 1 we give the necessary information about these works and present a set of illustrations. The rest of the book is devoted to the solution of a series of mathematical problems related to the optimization of the weighted Monte Carlo estimates.
Download or read book Monte Carlo Methods in Fuzzy Optimization written by James J. Buckley and published by Springer Science & Business Media. This book was released on 2008-02-20 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo Methods in Fuzzy Optimization is a clear and didactic book about Monte Carlo methods using random fuzzy numbers to obtain approximate solutions to fuzzy optimization problems. The book includes various solved problems such as fuzzy linear programming, fuzzy regression, fuzzy inventory control, fuzzy game theory, and fuzzy queuing theory. The book will appeal to engineers, researchers, and students in Fuzziness and applied mathematics.
Download or read book Computational Many Particle Physics written by Holger Fehske and published by Springer. This book was released on 2007-12-10 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.
Download or read book Monte Carlo Methods written by Adrian Barbu and published by Springer Nature. This book was released on 2020-02-24 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.
Download or read book Handbook of Monte Carlo Methods written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
Download or read book Optimization of Weighted Monte Carlo Methods written by Gennadii A. Mikhailov and published by Springer. This book was released on 1992 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is based on the munerical realization of natural or artificial models of the phenomena under considerations. In contrast to classical computing methods the Monte Carlo efficiency depends weakly on the dimen sion and geometric details of the problem. The method is used for solving complex problems of the radiation transfer theory, turbulent diffusion, chemi cal kinetics, theory of rarefied gases, diffraction of waves on random surfaces, etc. The Monte Carlo method is especially effective when using multi-processor computing systems which allow many independent statistical experiments to be simulated simultaneously. The weighted Monte Carlo estimates are constructed in order to diminish errors and to obtain dependent estimates for the calculated functionals for different values of parameters of the problem, i.e., to improve the functional dependence. In addition, the weighted estimates make it possible to evaluate special functionals, for example, the derivatives with respect to the parameters. There are many works concerned with the development of the weighted estimates. In Chap. 1 we give the necessary information about these works and present a set of illustrations. The rest of the book is devoted to the solution of a series of mathematical problems related to the optimization of the weighted Monte Carlo estimates.
Download or read book Parametric Estimates by the Monte Carlo Method written by G. A. Mikhailov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Parametric Estimates by the Monte Carlo Method".
Download or read book New Monte Carlo Methods With Estimating Derivatives written by G. A. Mikhailov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-02-14 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Monte Carlo Methods in Financial Engineering written by Paul Glasserman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Download or read book Monte Carlo Methods for Applied Scientists written by Ivan Dimov and published by World Scientific. This book was released on 2008 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is inherently parallel and the extensive and rapid development in parallel computers, computational clusters and grids has resulted in renewed and increasing interest in this method. At the same time there has been an expansion in the application areas and the method is now widely used in many important areas of science including nuclear and semiconductor physics, statistical mechanics and heat and mass transfer. This book attempts to bridge the gap between theory and practice concentrating on modern algorithmic implementation on parallel architecture machines. Although a suitable text for final year postgraduate mathematicians and computational scientists it is principally aimed at the applied scientists: only a small amount of mathematical knowledge is assumed and theorem proving is kept to a minimum, with the main focus being on parallel algorithms development often to applied industrial problems. A selection of algorithms developed both for serial and parallel machines are provided. Sample Chapter(s). Chapter 1: Introduction (231 KB). Contents: Basic Results of Monte Carlo Integration; Optimal Monte Carlo Method for Multidimensional Integrals of Smooth Functions; Iterative Monte Carlo Methods for Linear Equations; Markov Chain Monte Carlo Methods for Eigenvalue Problems; Monte Carlo Methods for Boundary-Value Problems (BVP); Superconvergent Monte Carlo for Density Function Simulation by B-Splines; Solving Non-Linear Equations; Algorithmic Effciency for Different Computer Models; Applications for Transport Modeling in Semiconductors and Nanowires. Readership: Applied scientists and mathematicians.
Download or read book The Cross Entropy Method written by Reuven Y. Rubinstein and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rubinstein is the pioneer of the well-known score function and cross-entropy methods. Accessible to a broad audience of engineers, computer scientists, mathematicians, statisticians and in general anyone, theorist and practitioner, who is interested in smart simulation, fast optimization, learning algorithms, and image processing.
Download or read book Monte Carlo Methods for Electromagnetics written by Matthew N.O. Sadiku and published by CRC Press. This book was released on 2018-10-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until now, novices had to painstakingly dig through the literature to discover how to use Monte Carlo techniques for solving electromagnetic problems. Written by one of the foremost researchers in the field, Monte Carlo Methods for Electromagnetics provides a solid understanding of these methods and their applications in electromagnetic computation. Including much of his own work, the author brings together essential information from several different publications. Using a simple, clear writing style, the author begins with a historical background and review of electromagnetic theory. After addressing probability and statistics, he introduces the finite difference method as well as the fixed and floating random walk Monte Carlo methods. The text then applies the Exodus method to Laplace’s and Poisson’s equations and presents Monte Carlo techniques for handing Neumann problems. It also deals with whole field computation using the Markov chain, applies Monte Carlo methods to time-varying diffusion problems, and explores wave scattering due to random rough surfaces. The final chapter covers multidimensional integration. Although numerical techniques have become the standard tools for solving practical, complex electromagnetic problems, there is no book currently available that focuses exclusively on Monte Carlo techniques for electromagnetics. Alleviating this problem, this book describes Monte Carlo methods as they are used in the field of electromagnetics.
Download or read book Monte Carlo Strategies in Scientific Computing written by Jun S. Liu and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.
Download or read book Introducing Monte Carlo Methods with R written by Christian Robert and published by Springer Science & Business Media. This book was released on 2010 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
Download or read book Monte Carlo and Quasi Monte Carlo Methods 2006 written by Alexander Keller and published by Springer Science & Business Media. This book was released on 2007-12-30 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the refereed proceedings of the Seventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, held in Ulm, Germany, in August 2006. The proceedings include carefully selected papers on many aspects of Monte Carlo and quasi-Monte Carlo methods and their applications. They also provide information on current research in these very active areas.
Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.