Download or read book Optimization in Function Spaces written by Peter Kosmol and published by Walter de Gruyter. This book was released on 2011-02-28 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. A particular emphasis is placed on the geometrical aspects of strong solvability of a convex optimization problem: it turns out that this property is equivalent to local uniform convexity of the corresponding convex function. This treatise also provides a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level. From the contents: Approximation and Polya Algorithms in Orlicz Spaces Convex Sets and Convex Functions Numerical Treatment of Non-linear Equations and Optimization Problems Stability and Two-stage Optimization Problems Orlicz Spaces, Orlicz Norm and Duality Differentiability and Convexity in Orlicz Spaces Variational Calculus
Download or read book Optimization in Function Spaces written by Amol Sasane and published by Courier Dover Publications. This book was released on 2016-03-15 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classroom-tested at the London School of Economics, this original, highly readable text offers numerous examples and exercises as well as detailed solutions. Prerequisites are multivariable calculus and basic linear algebra. 2015 edition.
Download or read book Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces written by Michael Ulbrich and published by SIAM. This book was released on 2011-07-28 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.
Download or read book Functional Analysis and Applied Optimization in Banach Spaces written by Fabio Botelho and published by Springer. This book was released on 2014-06-12 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.
Download or read book Optimization by Vector Space Methods written by David G. Luenberger and published by John Wiley & Sons. This book was released on 1997-01-23 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Download or read book From Vector Spaces to Function Spaces written by Yutaka Yamamoto and published by SIAM. This book was released on 2012-10-31 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to analytic methods in applied mathematics from the perspective of functional analysis, suitable for scientists, engineers and students.
Download or read book Convexity and Optimization in Banach Spaces written by Viorel Barbu and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.
Download or read book Convex Analysis and Optimization in Hadamard Spaces written by Miroslav Bacak and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-10-29 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990s. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.
Download or read book Convex Optimization in Normed Spaces written by Juan Peypouquet and published by Springer. This book was released on 2015-03-18 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independent research on the topic. It is also a concise, easy-to-follow and self-contained textbook, which may be useful for any researcher working on related fields, as well as teachers giving graduate-level courses on the topic. It will contain a thorough revision of the extant literature including both classical and state-of-the-art references.
Download or read book Introduction to the Theory of Optimization in Euclidean Space written by Samia Challal and published by CRC Press. This book was released on 2019-11-11 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
Download or read book Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization written by D. Butnariu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.
Download or read book Differential Equations on Measures and Functional Spaces written by Vassili Kolokoltsov and published by Springer. This book was released on 2019-06-20 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced book focuses on ordinary differential equations (ODEs) in Banach and more general locally convex spaces, most notably the ODEs on measures and various function spaces. It briefly discusses the fundamentals before moving on to the cutting edge research in linear and nonlinear partial and pseudo-differential equations, general kinetic equations and fractional evolutions. The level of generality chosen is suitable for the study of the most important nonlinear equations of mathematical physics, such as Boltzmann, Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard, Hamilton-Jacobi-Bellman, nonlinear Schroedinger, McKean-Vlasov diffusions and their nonlocal extensions, mass-action-law kinetics from chemistry. It also covers nonlinear evolutions arising in evolutionary biology and mean-field games, optimization theory, epidemics and system biology, in general models of interacting particles or agents describing splitting and merging, collisions and breakage, mutations and the preferential-attachment growth on networks. The book is intended mainly for upper undergraduate and graduate students, but is also of use to researchers in differential equations and their applications. It particularly highlights the interconnections between various topics revealing where and how a particular result is used in other chapters or may be used in other contexts, and also clarifies the links between the languages of pseudo-differential operators, generalized functions, operator theory, abstract linear spaces, fractional calculus and path integrals.
Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Download or read book Optimization with PDE Constraints written by Michael Hinze and published by Springer Science & Business Media. This book was released on 2008-10-16 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.
Download or read book Convex Functions and Optimization Methods on Riemannian Manifolds written by C. Udriste and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The object of this book is to present the basic facts of convex functions, standard dynamical systems, descent numerical algorithms and some computer programs on Riemannian manifolds in a form suitable for applied mathematicians, scientists and engineers. It contains mathematical information on these subjects and applications distributed in seven chapters whose topics are close to my own areas of research: Metric properties of Riemannian manifolds, First and second variations of the p-energy of a curve; Convex functions on Riemannian manifolds; Geometric examples of convex functions; Flows, convexity and energies; Semidefinite Hessians and applications; Minimization of functions on Riemannian manifolds. All the numerical algorithms, computer programs and the appendices (Riemannian convexity of functions f:R ~ R, Descent methods on the Poincare plane, Descent methods on the sphere, Completeness and convexity on Finsler manifolds) constitute an attempt to make accesible to all users of this book some basic computational techniques and implementation of geometric structures. To further aid the readers,this book also contains a part of the folklore about Riemannian geometry, convex functions and dynamical systems because it is unfortunately "nowhere" to be found in the same context; existing textbooks on convex functions on Euclidean spaces or on dynamical systems do not mention what happens in Riemannian geometry, while the papers dealing with Riemannian manifolds usually avoid discussing elementary facts. Usually a convex function on a Riemannian manifold is a real valued function whose restriction to every geodesic arc is convex.
Download or read book Function Spaces written by Krzysztof Jarosz and published by American Mathematical Soc.. This book was released on 2007 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of contributions by the participants of the Fifth Conference on Function Spaces, held at Southern Illinois University in May of 2006. The papers cover a broad range of topics, including spaces and algebras of analytic functions of one and of many variables (and operators on such spaces), $L{p $-spaces, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and other related subjects. The goal of the conference was to bring together mathematicians interested in various problems related to function spaces and to facilitate the exchange of ideas between people working on similar problems. Hence, the majority of papers in this book are accessible to non-experts. Some articles contain expositions of known results and discuss open problems, others contain new results.
Download or read book Applying Particle Swarm Optimization written by Burcu Adıgüzel Mercangöz and published by Springer Nature. This book was released on 2021-05-13 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the theoretical structure of particle swarm optimization (PSO) and focuses on the application of PSO to portfolio optimization problems. The general goal of portfolio optimization is to find a solution that provides the highest expected return at each level of portfolio risk. According to H. Markowitz’s portfolio selection theory, as new assets are added to an investment portfolio, the total risk of the portfolio’s decreases depending on the correlations of asset returns, while the expected return on the portfolio represents the weighted average of the expected returns for each asset. The book explains PSO in detail and demonstrates how to implement Markowitz’s portfolio optimization approach using PSO. In addition, it expands on the Markowitz model and seeks to improve the solution-finding process with the aid of various algorithms. In short, the book provides researchers, teachers, engineers, managers and practitioners with many tools they need to apply the PSO technique to portfolio optimization.