EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimal Trajectory Tracking of Nonlinear Dynamical Systems

Download or read book Optimal Trajectory Tracking of Nonlinear Dynamical Systems written by Jakob Löber and published by Springer. This book was released on 2016-12-20 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.

Book On the Time optimal Trajectory Planning Along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators

Download or read book On the Time optimal Trajectory Planning Along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators written by Pedro Reynoso Mora and published by . This book was released on 2013 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, we study two important subjects in robotics: (i) time-optimal trajectory planning, and (ii) optimal control synthesis methodologies for trajectory tracking. In the first subject, we concentrate on a rather specific sub-class of problems, the time-optimal trajectory planning along predetermined geometric paths. In this kind of problem, a purely geometric path is already known, and the task is to find out how to move along this path in the shortest time physically possible. In order to generate the true fastest solutions achievable by the actual robot manipulator, the complete nonlinear dynamic model should be incorporated into the problem formulation as a constraint that must be satisfied by the generated trajectories and feedforward torques. This important problem was studied in the 1980s, with many related methods for addressing it based on the so-called velocity limit curve and variational methods. Modern formulations directly discretize the problem and obtain a large-scale mathematical optimization problem, which is a prominent approach to tackle optimal control problems that has gained popularity over variational methods, mainly because it allows to obtain numerical solutions for harder problems. We contribute to the referred problem of time-optimal trajectory planning, by extending and improving the existing mathematical optimization formulations. We successfully incorporate the complete nonlinear dynamic model, including viscous friction because for the fastest motions it becomes even more significant than Coulomb friction; of course, Coulomb friction is likewise accommodated for in our formulation. We develop a framework that guarantees exact dynamic feasibility of the generated time-optimal trajectories and feedforward torques. Our initial formulation is carefully crafted in a rather specific manner, so that it allows to naturally propose a convex relaxation that solves exactly the original problem formulation, which is non-convex and therefore hard to solve. In order to numerically solve the proposed formulation, a discretization scheme is also developed. Unlike traditional and modern formulations, we motivate the incorporation of additional criteria to our original formulation, with simulation and experimental studies of three crucial variables for a 6-axis industrial manipulator. Namely, the resulting applied torques, the readings of a 3-axis accelerometer mounted at the manipulator end-effector, and the detrimental effects on the tracking errors induced by pure time-optimal solutions. We therefore emphasize the significance of penalizing a measure of total jerk and of imposing acceleration constraints. These two criteria are incorporated without destroying convexity. The final formulation generates near time-optimal trajectories and feedforward torques with traveling times that are slightly larger than those of pure time-optimal solutions. Nevertheless, the detrimental effects induced by pure time-optimality are eliminated. Experimental results on a 6-axis industrial manipulator confirm that our formulation generates the fastest solutions that can actually be implemented in the real robot manipulator. Following the work done on near time-optimal trajectories, we explore two controller synthesis methodologies for trajectory tracking, which are more suitable to achieve trajectory-tracking under such fast trajectories. In the first approach, we approximate the discrete-time nonlinear dynamics of robot manipulators, moving along the state-reference trajectory, as an affine time-varying (ATV) dynamical system in discrete-time. Therefore, the problem of trajectory tracking for robot manipulators is posed as a linear quadratic (LQ) optimal control problem for a class of discrete-time ATV dynamical systems. Then, an ATV control law to achieve trajectory tracking on the ATV system is developed, which uses LQ methods for linear time-varying (LTV) systems. Since the ATV dynamical system approximates the nonlinear robot dynamics along the state-reference trajectory, the resulting time-varying control law is suitable to achieve trajectory tracking on the robot manipulator. The ATV control law is implemented in experiments for the 6-axis industrial manipulator, tracking the near time-optimal trajectory. Experimental results verify the better performance achieved with the ATV control law, but also expose its shortcomings. The second approach to address trajectory tracking is related in spirit, but different in crucial aspects, which ultimately endow this approach with its superior features. In this novel approach, the highly nonlinear dynamic model of robot manipulators, moving along a state-reference trajectory, is approximated as a class of piecewise affine (PWA) dynamical systems. We propose a framework to construct the referred PWA system, which consists in: (i) choosing strategic operating points on the state-reference trajectory with their respective (local) linearized system dynamics, (ii) constructing ellipsoidal regions centered at the operating points, whose purpose is to facilitate the scheduling strategy of controller gains designed for each local dynamics. Likewise, in order to switch controller gains as the robot state traverses in the direction of the state-reference trajectory, a simple scheduling strategy is proposed. The controller synthesis near each operating point is an LQR-type that takes into account the local coupled dynamics. The referred PWA control law is implemented in experiments for the 6-axis manipulator tracking the near time-optimal trajectory. The experimental results show the feasibility and superiority of the PWA control law over the typical PID controller and the ATV control law.

Book Discrete Time Inverse Optimal Control for Nonlinear Systems

Download or read book Discrete Time Inverse Optimal Control for Nonlinear Systems written by Edgar N. Sanchez and published by CRC Press. This book was released on 2017-12-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.

Book Neuro Fuzzy Control of Industrial Systems with Actuator Nonlinearities

Download or read book Neuro Fuzzy Control of Industrial Systems with Actuator Nonlinearities written by Frank L. Lewis and published by SIAM. This book was released on 2002-01-01 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings neural networks and fuzzy logic together with dynamical control systems. Each chapter presents powerful control approaches for the design of intelligent controllers to compensate for actuator nonlinearities.

Book An Optimal Trajectory Tracking Problem for Certain Nonlinear Control Systems

Download or read book An Optimal Trajectory Tracking Problem for Certain Nonlinear Control Systems written by Guanrong Chen and published by . This book was released on 1991 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we study an optimal trajectory tracking problem for the nonlinear control systems that possess global linearizations. The trajectory tracking problem under investigation is point-to-point type where the constraints can be either inequalities or equalities (interpolations). For the purposes of theoretical analysis and system-behavior understanding, we establish a characterization result for all possible optimal solutions of the problem and derive as well explicit closed-form formulations for the solutions. The proposed research is first motivated by a specific optimal robotic trajectory planning problem. The robotics problem is finally solved by using the new technique as an example of applications.

Book Advanced Optimal Control and Applications Involving Critic Intelligence

Download or read book Advanced Optimal Control and Applications Involving Critic Intelligence written by Ding Wang and published by Springer Nature. This book was released on 2023-01-21 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book intends to report new optimal control results with critic intelligence for complex discrete-time systems, which covers the novel control theory, advanced control methods, and typical applications for wastewater treatment systems. Therein, combining with artificial intelligence techniques, such as neural networks and reinforcement learning, the novel intelligent critic control theory as well as a series of advanced optimal regulation and trajectory tracking strategies are established for discrete-time nonlinear systems, followed by application verifications to complex wastewater treatment processes. Consequently, developing such kind of critic intelligence approaches is of great significance for nonlinear optimization and wastewater recycling. The book is likely to be of interest to researchers and practitioners as well as graduate students in automation, computer science, and process industry who wish to learn core principles, methods, algorithms, and applications in the field of intelligent optimal control. It is beneficial to promote the development of intelligent optimal control approaches and the construction of high-level intelligent systems.

Book Adaptive Dynamic Programming  Single and Multiple Controllers

Download or read book Adaptive Dynamic Programming Single and Multiple Controllers written by Ruizhuo Song and published by Springer. This book was released on 2018-12-28 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.

Book Trajectory tracking  path following  and learning in model predictive control

Download or read book Trajectory tracking path following and learning in model predictive control written by Fabian Russell Pfitz and published by Logos Verlag Berlin GmbH. This book was released on 2023-08-21 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we present novel model predictive control (MPC) formulations based on a convex open-loop optimal control problem to tackle the problem setup of trajectory tracking and path following as well as the control of systems with unknown system dynamic. In particular, we consider the framework of relaxed barrier function based MPC (rbMPC). We extend the existing stability theory to the trajectory tracking and the path following problem. We establish important system theoretic properties like closed-loop stability and exact constraint satisfaction under suitable assumptions. Moreover, we evaluate the developed MPC algorithms in the area of automated driving in simulations as well as in a real-world driving scenario. Further, we consider the control of completely unknown systems based on online optimization. We divide the overall problem into the design of an estimation algorithm and a control algorithm. The control algorithm is a model-independent receding horizon control algorithm in which important system theoretic properties like convergence to the origin are guaranteed without the knowledge of the true system parameters. The estimation and control algorithm are combined together and convergence to the origin of the closed-loop system for fully unknown linear time-invariant discrete-time systems is shown.

Book Feedback Systems

Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Book Optimal Event Triggered Control Using Adaptive Dynamic Programming

Download or read book Optimal Event Triggered Control Using Adaptive Dynamic Programming written by Sarangapani Jagannathan and published by CRC Press. This book was released on 2024-06-21 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Event-triggered Control using Adaptive Dynamic Programming discusses event triggered controller design which includes optimal control and event sampling design for linear and nonlinear dynamic systems including networked control systems (NCS) when the system dynamics are both known and uncertain. The NCS are a first step to realize cyber-physical systems (CPS) or industry 4.0 vision. The authors apply several powerful modern control techniques to the design of event-triggered controllers and derive event-trigger condition and demonstrate closed-loop stability. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case. The book begins by providing background on linear and nonlinear systems, NCS, networked imperfections, distributed systems, adaptive dynamic programming and optimal control, stability theory, and optimal adaptive event-triggered controller design in continuous-time and discrete-time for linear, nonlinear and distributed systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for infinite horizons. The text then: Introduces event triggered control of linear and nonlinear systems, describing the design of adaptive controllers for them Presents neural network-based optimal adaptive control and game theoretic formulation of linear and nonlinear systems enclosed by a communication network Addresses the stochastic optimal control of linear and nonlinear NCS by using neuro dynamic programming Explores optimal adaptive design for nonlinear two-player zero-sum games under communication constraints to solve optimal policy and event trigger condition Treats an event-sampled distributed linear and nonlinear systems to minimize transmission of state and control signals within the feedback loop via the communication network Covers several examples along the way and provides applications of event triggered control of robot manipulators, UAV and distributed joint optimal network scheduling and control design for wireless NCS/CPS in order to realize industry 4.0 vision An ideal textbook for senior undergraduate students, graduate students, university researchers, and practicing engineers, Optimal Event Triggered Control Design using Adaptive Dynamic Programming instills a solid understanding of neural network-based optimal controllers under event-sampling and how to build them so as to attain CPS or Industry 4.0 vision.

Book Advances in Applied Nonlinear Dynamics  Vibration and Control  2021

Download or read book Advances in Applied Nonlinear Dynamics Vibration and Control 2021 written by Xingjian Jing and published by Springer Nature. This book was released on 2021-09-23 with total page 1210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is to provide readers with up-to-date advances in applied and interdisciplinary engineering science and technologies related to nonlinear dynamics, vibration, control, robotics, and their engineering applications, developed in the most recent years. All the contributed chapters come from active scholars in the area, which cover advanced theory & methods, innovative technologies, benchmark experimental validations and engineering practices. Readers would benefit from this state-of-the-art collection of applied nonlinear dynamics, in-depth vibration engineering theory, cutting-edge control methods and technologies, and definitely find stimulating ideas for their on-going R&D work. This book is intended for graduate students, research staff and scholars in academics, and also provides useful hand-up guidance for professional and engineers in practical engineering missions.

Book Proceedings of 2021 Chinese Intelligent Systems Conference

Download or read book Proceedings of 2021 Chinese Intelligent Systems Conference written by Yingmin Jia and published by Springer Nature. This book was released on 2021-10-07 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 17th Chinese Intelligent Systems Conference, held in Fuzhou, China, on Oct 16-17, 2021. It focuses on new theoretical results and techniques in the field of intelligent systems and control. This is achieved by providing in-depth study on a number of major topics such as Multi-Agent Systems, Complex Networks, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control Guidance, Navigation and Control of Flight Vehicles and so on. The book is particularly suited for readers who are interested in learning intelligent system and control and artificial intelligence. The book can benefit researchers, engineers, and graduate students.

Book Proceedings of 2021 Chinese Intelligent Systems Conference

Download or read book Proceedings of 2021 Chinese Intelligent Systems Conference written by Yingmin Jia and published by Springer Nature. This book was released on 2021-10-06 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 17th Chinese Intelligent Systems Conference, held in Fuzhou, China, on Oct 16-17, 2021. It focuses on new theoretical results and techniques in the field of intelligent systems and control. This is achieved by providing in-depth study on a number of major topics such as Multi-Agent Systems, Complex Networks, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control Guidance, Navigation and Control of Flight Vehicles and so on. The book is particularly suited for readers who are interested in learning intelligent system and control and artificial intelligence. The book can benefit researchers, engineers, and graduate students.

Book Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems

Download or read book Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems written by Ding Wang and published by Springer. This book was released on 2018-08-10 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on the latest advances in adaptive critic control with robust stabilization for uncertain nonlinear systems. Covering the core theory, novel methods, and a number of typical industrial applications related to the robust adaptive critic control field, it develops a comprehensive framework of robust adaptive strategies, including theoretical analysis, algorithm design, simulation verification, and experimental results. As such, it is of interest to university researchers, graduate students, and engineers in the fields of automation, computer science, and electrical engineering wishing to learn about the fundamental principles, methods, algorithms, and applications in the field of robust adaptive critic control. In addition, it promotes the development of robust adaptive critic control approaches, and the construction of higher-level intelligent systems.

Book Simulation Techniques for Applied Dynamics

Download or read book Simulation Techniques for Applied Dynamics written by Martin Arnold and published by Springer Science & Business Media. This book was released on 2009-06-15 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The coupling of models from different physical domains and the efficient and reliable simulation of multidisciplinary problems in engineering applications are important topics for various fields of engineering, in simulation technology and in the development and analysis of numerical solvers. The volume presents advanced modelling and simulation techniques for the dynamical analysis of coupled engineering systems consisting of mechanical, electrical, hydraulic and biological components as well as control devices often based on computer hardware and software. The book starts with some basics in multibody dynamics and in port-based modelling and focuses on the modelling and simulation of heterogeneous systems with special emphasis on robust and efficient numerical solution techniques and on a variety of applied problems including case studies of co-simulation in industrial applications, methods and problems of model based controller design and real-time application.

Book Differentially Flat Systems

Download or read book Differentially Flat Systems written by Hebertt Sira-Ramírez and published by CRC Press. This book was released on 2018-10-03 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrating the power, simplicity, and generality of the concept of flatness, this reference explains how to identify, utilize, and apply flatness in system planning and design. The book includes a large assortment of exercises and models that range from elementary to complex classes of systems. Leading students and professionals through a vast array of designs, simulations, and analytical studies on the traditional uses of flatness, Differentially Flat Systems contains an extensive amount of examples that showcase the value of flatness in system design, demonstrate how flatness can be assessed in the context of perturbed systems and apply static and dynamic feedback controller design techniques.

Book Foundations and Applications of Intelligent Systems

Download or read book Foundations and Applications of Intelligent Systems written by Fuchun Sun and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings present technical papers selected from the 2012 International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2012), held on December 15-17 in Beijing. The aim of this conference is to bring together experts from different fields of expertise to discuss the state-of-the-art in Intelligent Systems and Knowledge Engineering, and to present new findings and perspectives on future developments. The proceedings introduce current scientific and technical advances in the fields of artificial intelligence, machine learning, pattern recognition, data mining, knowledge engineering, information retrieval, information theory, knowledge-based systems, knowledge representation and reasoning, multi-agent systems, and natural-language processing, etc. Furthermore they include papers on new intelligent computing paradigms, which combine new computing methodologies, e.g., cloud computing, service computing and pervasive computing with traditional intelligent methods. By presenting new methodologies and practices, the proceedings will benefit both researchers and practitioners who want to utilize intelligent methods in their specific fields. Dr. Fuchun Sun is a professor at the Department of Computer Science & Technology, Tsinghua University, China. Dr. Tianrui Li is a professor at the School of Information Science & Technology, Southwest Jiaotong University, Chengdu, China. Dr. Hongbo Li also works at the Department of Computer Science & Technology, Tsinghua University, China.