Download or read book Approximate Dynamic Programming for Dynamic Vehicle Routing written by Marlin Wolf Ulmer and published by Springer. This book was released on 2017-04-19 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a straightforward overview for every researcher interested in stochastic dynamic vehicle routing problems (SDVRPs). The book is written for both the applied researcher looking for suitable solution approaches for particular problems as well as for the theoretical researcher looking for effective and efficient methods of stochastic dynamic optimization and approximate dynamic programming (ADP). To this end, the book contains two parts. In the first part, the general methodology required for modeling and approaching SDVRPs is presented. It presents adapted and new, general anticipatory methods of ADP tailored to the needs of dynamic vehicle routing. Since stochastic dynamic optimization is often complex and may not always be intuitive on first glance, the author accompanies the ADP-methodology with illustrative examples from the field of SDVRPs. The second part of this book then depicts the application of the theory to a specific SDVRP. The process starts from the real-world application. The author describes a SDVRP with stochastic customer requests often addressed in the literature, and then shows in detail how this problem can be modeled as a Markov decision process and presents several anticipatory solution approaches based on ADP. In an extensive computational study, he shows the advantages of the presented approaches compared to conventional heuristics. To allow deep insights in the functionality of ADP, he presents a comprehensive analysis of the ADP approaches.
Download or read book Reinforcement Learning and Stochastic Optimization written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2022-03-15 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
Download or read book Vehicle Routing written by Paolo Toth and published by SIAM. This book was released on 2014-12-05 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vehicle routing problems, among the most studied in combinatorial optimization, arise in many practical contexts (freight distribution and collection, transportation, garbage collection, newspaper delivery, etc.). Operations researchers have made significant developments in the algorithms for their solution, and Vehicle Routing: Problems, Methods, and Applications, Second Edition reflects these advances. The text of the new edition is either completely new or significantly revised and provides extensive and complete state-of-the-art coverage of vehicle routing by those who have done most of the innovative research in the area; it emphasizes methodology related to specific classes of vehicle routing problems and, since vehicle routing is used as a benchmark for all new solution techniques, contains a complete overview of current solutions to combinatorial optimization problems. It also includes several chapters on important and emerging applications, such as disaster relief and green vehicle routing.
Download or read book The Vehicle Routing Problem Latest Advances and New Challenges written by Bruce L. Golden and published by Springer Science & Business Media. This book was released on 2008-07-20 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a unified and carefully developed presentation, this book systematically examines recent developments in VRP. The book focuses on a portfolio of significant technical advances that have evolved over the past few years for modeling and solving vehicle routing problems and VRP variations. Reflecting the most recent scholarship, this book is written by one of the top research scholars in Vehicle Routing and is one of the most important books in VRP to be published in recent times.
Download or read book The Vehicle Routing Problem written by Paolo Toth and published by . This book was released on 2002 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2006 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Pro active Dynamic Vehicle Routing written by Francesco Ferrucci and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with transportation processes denoted as the Real-time Distribution of Perishable Goods (RDOPG). The book presents three contributions that are made to the field of transportation. First, a model considering the minimization of customer inconvenience is formulated. Second, a pro-active real-time control approach is proposed. Stochastic knowledge is generated from past request information by a new forecasting approach and is used in the pro-active approach to guide vehicles to request-likely areas before real requests arrive there. Various computational results are presented to show that in many cases the pro-active approach is able to achieve significantly improved results. Moreover, a measure for determining the structural quality of request data sets is also proposed. The third contribution of this book is a method that is presented for considering driver inconvenience aspects which arise from vehicle en-route diversion activities. Specifically, this method makes it possible to restrict the number of performed vehicle en-route diversion activities.
Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2007-10-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.
Download or read book Introduction to Stochastic Programming written by John R. Birge and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.
Download or read book Column Generation written by Guy Desaulniers and published by Springer Science & Business Media. This book was released on 2006-03-20 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Column Generation is an insightful overview of the state of the art in integer programming column generation and its many applications. The volume begins with "A Primer in Column Generation" which outlines the theory and ideas necessary to solve large-scale practical problems, illustrated with a variety of examples. Other chapters follow this introduction on "Shortest Path Problems with Resource Constraints," "Vehicle Routing Problem with Time Window," "Branch-and-Price Heuristics," "Cutting Stock Problems," each dealing with methodological aspects of the field. Three chapters deal with transportation applications: "Large-scale Models in the Airline Industry," "Robust Inventory Ship Routing by Column Generation," and "Ship Scheduling with Recurring Visits and Visit Separation Requirements." Production is the focus of another three chapters: "Combining Column Generation and Lagrangian Relaxation," "Dantzig-Wolfe Decomposition for Job Shop Scheduling," and "Applying Column Generation to Machine Scheduling." The final chapter by François Vanderbeck, "Implementing Mixed Integer Column Generation," reviews how to set-up the Dantzig-Wolfe reformulation, adapt standard MIP techniques to the column generation context (branching, preprocessing, primal heuristics), and deal with specific column generation issues (initialization, stabilization, column management strategies).
Download or read book American Doctoral Dissertations written by and published by . This book was released on 1998 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbooks in Operations Research and Management Science Transportation written by Cynthia Barnhart and published by Elsevier. This book was released on 2006-12-08 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains eleven chapters describing some of the most recent methodological operations research developments in transportation. It is structured around the main transportation modes, and each chapter is written by a group of well-recognized researchers. Because of the major impact of operations research methods in the field of air transportation over the past forty years, it is befitting to open the book with a chapter on airline operations management. This book will prove useful to researchers, students, and practitioners in transportation and will stimulate further research in this rich and fascinating area. - Volume 14 examines transport and its relationship with operations and management science - 11 chapters cover the most recent research developments in transportation - Focuses on main transportation modes-air travel, automobile, public transit, maritime transport, and more
Download or read book Proceedings of 2021 Chinese Intelligent Automation Conference written by Zhidong Deng and published by Springer Nature. This book was released on 2021-10-08 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings present selected research papers from the CIAC2021, held in Zhanjiang, China on Nov 5-7, 2021. It covers a wide range of topics including intelligent control, robotics, artificial intelligence, pattern recognition, unmanned systems, IoT and machine learning. It includes original research and the latest advances in the field of intelligent automation. Engineers and researchers from academia, industry, and government can gain valuable insights into solutions combining ideas from multiple disciplines in this field.
Download or read book Applied Operational Research written by Kaveh Sheibani and published by ORLAB Analytics. This book was released on 2013-07-29 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings gather contributions presented at the 5th International Conference on Applied Operational Research (ICAOR 2013) in Lisbon, Portugal, July 29-31, 2013, published in the series Lecture Notes in Management Science (LNMS). The conference covers all aspects of Operational Research and Management Science (OR/MS) with a particular emphasis on applications.
Download or read book Advances in Computational Logistics and Supply Chain Analytics written by Ibraheem Alharbi and published by Springer Nature. This book was released on with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Rollout Policy Iteration and Distributed Reinforcement Learning written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2021-08-20 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to develop in greater depth some of the methods from the author's Reinforcement Learning and Optimal Control recently published textbook (Athena Scientific, 2019). In particular, we present new research, relating to systems involving multiple agents, partitioned architectures, and distributed asynchronous computation. We pay special attention to the contexts of dynamic programming/policy iteration and control theory/model predictive control. We also discuss in some detail the application of the methodology to challenging discrete/combinatorial optimization problems, such as routing, scheduling, assignment, and mixed integer programming, including the use of neural network approximations within these contexts. The book focuses on the fundamental idea of policy iteration, i.e., start from some policy, and successively generate one or more improved policies. If just one improved policy is generated, this is called rollout, which, based on broad and consistent computational experience, appears to be one of the most versatile and reliable of all reinforcement learning methods. In this book, rollout algorithms are developed for both discrete deterministic and stochastic DP problems, and the development of distributed implementations in both multiagent and multiprocessor settings, aiming to take advantage of parallelism. Approximate policy iteration is more ambitious than rollout, but it is a strictly off-line method, and it is generally far more computationally intensive. This motivates the use of parallel and distributed computation. One of the purposes of the monograph is to discuss distributed (possibly asynchronous) methods that relate to rollout and policy iteration, both in the context of an exact and an approximate implementation involving neural networks or other approximation architectures. Much of the new research is inspired by the remarkable AlphaZero chess program, where policy iteration, value and policy networks, approximate lookahead minimization, and parallel computation all play an important role.
Download or read book Annotated Bibliographies in Combinatorial Optimization written by Mauro Dell'Amico and published by . This book was released on 1997-08-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wiley-Interscience Series in Discrete Mathematics and Optimization Advisory Editors Ronald L. Graham Jan Karel Lenstra Robert E. Tarjan Discrete Mathematics and Optimization involves the study of finite structures and is one of the fastest growing areas in mathematics today. The level and depth of recent advances in the area and the wide applicability of its evolving techniques point to the rapidity with which the field is moving and presage the ever-increasing interaction between it and computer science. The Series provides a broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, mathematical programming and the analysis of algorithms, and including such topics as Ramsey theory, transversal theory, block designs, finite geometries, Polya theory, graph and matroid algorithms, network flows, polyhedral combinatorics and computational complexity. The Wiley-Interscience Series in Discrete Mathematics and Optimization will be a substantial part of the record in this extraordinary development. Recent titles in the Series: Local Search in Combinatorial Optimization Edited by Emile H. L. Aarts Philips Research Laboratories, Eindhoven and Eindhoven University of Technology, Eindhoven Jan Karel Lenstra Eindhoven University of Technology, Eindhoven and CWI Amsterdam In the past three decades local search has grown from a simple heuristic idea into a mature field of research in combinatorial optimization. Local search is still the method of choice for NP-hard problems as it provides a robust approach for obtaining high-quality solutions to problems of a realistic size in a reasonable time. This area of discrete mathematics is of great practical use and is attracting ever-increasing attention. The contributions to this book cover local search and its variants from both a theoretical and practical point of view, each with a chapter written by leading authorities on that particular aspect. Chapters 1 to 7 deal with the theory of local search and describe the principal search strategies such as simulated annealing, tabu search, genetic algorithms and neural networks. The remaining chapters present a wealth of results on applications of local search to problems in management science and engineering, including the traveling salesman problem, vehicle routing, machine scheduling, VLSI design and code design. This book is an important reference volume and an invaluable source of inspiration for advanced students and researchers in discrete mathematics, computer science, operations research, industrial engineering and management science.