EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Decision Making Under Uncertainty

Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Book Irreversible Decisions under Uncertainty

Download or read book Irreversible Decisions under Uncertainty written by Svetlana Boyarchenko and published by Springer Science & Business Media. This book was released on 2007-08-26 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, two highly experienced authors present an alternative approach to optimal stopping problems. The basic ideas and techniques of the approach can be explained much simpler than the standard methods in the literature on optimal stopping problems. The monograph will teach the reader to apply the technique to many problems in economics and finance, including new ones. From the technical point of view, the method can be characterized as option pricing via the Wiener-Hopf factorization.

Book Bounded Rationality in Decision Making Under Uncertainty  Towards Optimal Granularity

Download or read book Bounded Rationality in Decision Making Under Uncertainty Towards Optimal Granularity written by Joe Lorkowski and published by Springer. This book was released on 2017-07-01 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses an intriguing question: are our decisions rational? It explains seemingly irrational human decision-making behavior by taking into account our limited ability to process information. It also shows with several examples that optimization under granularity restriction leads to observed human decision-making. Drawing on the Nobel-prize-winning studies by Kahneman and Tversky, researchers have found many examples of seemingly irrational decisions: e.g., we overestimate the probability of rare events. Our explanation is that since human abilities to process information are limited, we operate not with the exact values of relevant quantities, but with “granules” that contain these values. We show that optimization under such granularity indeed leads to observed human behavior. In particular, for the first time, we explain the mysterious empirical dependence of betting odds on actual probabilities. This book can be recommended to all students interested in human decision-making, to researchers whose work involves human decisions, and to practitioners who design and employ systems involving human decision-making —so that they can better utilize our ability to make decisions under uncertainty.

Book Decision Making Under Uncertainty in Electricity Markets

Download or read book Decision Making Under Uncertainty in Electricity Markets written by Antonio J. Conejo and published by Springer Science & Business Media. This book was released on 2010-09-08 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision Making Under Uncertainty in Electricity Markets provides models and procedures to be used by electricity market agents to make informed decisions under uncertainty. These procedures rely on well established stochastic programming models, which make them efficient and robust. Particularly, these techniques allow electricity producers to derive offering strategies for the pool and contracting decisions in the futures market. Retailers use these techniques to derive selling prices to clients and energy procurement strategies through the pool, the futures market and bilateral contracting. Using the proposed models, consumers can derive the best energy procurement strategies using the available trading floors. The market operator can use the techniques proposed in this book to clear simultaneously energy and reserve markets promoting efficiency and equity. The techniques described in this book are of interest for professionals working on energy markets, and for graduate students in power engineering, applied mathematics, applied economics, and operations research.

Book Uncertain Optimal Control

Download or read book Uncertain Optimal Control written by Yuanguo Zhu and published by Springer. This book was released on 2018-08-29 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the theory and applications of uncertain optimal control, and establishes two types of models including expected value uncertain optimal control and optimistic value uncertain optimal control. These models, which have continuous-time forms and discrete-time forms, make use of dynamic programming. The uncertain optimal control theory relates to equations of optimality, uncertain bang-bang optimal control, optimal control with switched uncertain system, and optimal control for uncertain system with time-delay. Uncertain optimal control has applications in portfolio selection, engineering, and games. The book is a useful resource for researchers, engineers, and students in the fields of mathematics, cybernetics, operations research, industrial engineering, artificial intelligence, economics, and management science.

Book Optimal Decisions under Uncertainty

Download or read book Optimal Decisions under Uncertainty written by J.K. Sengupta and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of optimal decisions in a stochastic environment has seen many new developments in recent years. The implications of such theory for empirical and policy applications are several. This book attempts to analyze some of the impor tant applied aspects of this theory and its recent developments. The stochastic environment is considered here in specific form, e.g., (a) linear programs (LP) with parameters subject to a probabilistic mechanism, (b) decision models with risk aversion, (c) resource allocation in a team, and (d) national economic planning. The book attempts to provide new research insights into several areas, e.g., (a) mixed strategy solutions and econometric tests of hypotheses of LP models, (b) the dual problems of efficient estimation and optimal regulation, (c) input-output planning under imperfect competition, and (d) linear programs viewed as constrained statistical games. Methods of optimal decision rules developed here for quadratic and linear decision problems are applicable in three broad areas: (a) applied economic models in resource allocation, planning and team decision, (b) operations research models in management decisions involving portfolio analysis and stochastic programming, and (c) systems science models in stochastic control and adaptive behavior. Some results reported here have been published in professional journals be-. fore, and I would like to thank the following journals in particular: Inter national Journal of Systems Science, Journal of Optimization Theory and Applica tions and Journal of Mathematical Analysis and Applications.

Book Decisions Under Uncertainty

Download or read book Decisions Under Uncertainty written by Ian Jordaan and published by Cambridge University Press. This book was released on 2005-04-07 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Patient Care Under Uncertainty

Download or read book Patient Care Under Uncertainty written by Charles F. Manski and published by Princeton University Press. This book was released on 2019-09-10 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the past few years, the author, a renowned economist, has been applying the statistical tools of economics to decision making under uncertainty in the context of patient health status and response to treatment. He shows how statistical imprecision and identification problems affect empirical research in the patient-care sphere.

Book Risk  Choice  and Uncertainty

Download or read book Risk Choice and Uncertainty written by George G. Szpiro and published by Columbia University Press. This book was released on 2020-01-07 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: At its core, economics is about making decisions. In the history of economic thought, great intellectual prowess has been exerted toward devising exquisite theories of optimal decision making in situations of constraint, risk, and scarcity. Yet not all of our choices are purely logical, and so there is a longstanding tension between those emphasizing the rational and irrational sides of human behavior. One strand develops formal models of rational utility maximizing while the other draws on what behavioral science has shown about our tendency to act irrationally. In Risk, Choice, and Uncertainty, George G. Szpiro offers a new narrative of the three-century history of the study of decision making, tracing how crucial ideas have evolved and telling the stories of the thinkers who shaped the field. Szpiro examines economics from the early days of theories spun from anecdotal evidence to the rise of a discipline built around elegant mathematics through the past half century’s interest in describing how people actually behave. Considering the work of Locke, Bentham, Jevons, Walras, Friedman, Tversky and Kahneman, Thaler, and a range of other thinkers, he sheds light on the vast scope of discovery since Bernoulli first proposed a solution to the St. Petersburg Paradox. Presenting fundamental mathematical theories in easy-to-understand language, Risk, Choice, and Uncertainty is a revelatory history for readers seeking to grasp the grand sweep of economic thought.

Book Economic Decisions Under Uncertainty

Download or read book Economic Decisions Under Uncertainty written by Hans-Werner Sinn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fundamental Issues Involved Why do we need a theory of uncertainty? It is a fact that almost all man's economic decisions are made under conditions of uncertainty, but this fact alone does not provide a strong enough argument for making the effort necessary to generalize ordinary preference theory designed for a world of perfect certainty. In accordance with Occam's Razor, the mathematician may well welcome a generalization of assumptions even if it does not promise more than a restatement of known results. The economist, however, will only be well disposed towards making the effort if he can expect to achieve new insights and interesting results, for he is interested in the techniques necessary for the generalization only as means to an end, not as ends in themselves. A stronger reason for developing a theory of uncertainty, therefore, seems to be the fact that there are kinds of economic activities to which the non-stochastic preference theory has no access or has access only through highly artificial constructions. Such activities include portfolio decisions of wealth holders, speculation, and insurance. These will be considered in detail in the last chapter of the book. The main purpose of this book, however, is not to apply a theory of uncertainty to concrete economic problems, the purpose rather is to formulate such a theory.

Book Investment under Uncertainty

Download or read book Investment under Uncertainty written by Robert K. Dixit and published by Princeton University Press. This book was released on 2012-07-14 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: How should firms decide whether and when to invest in new capital equipment, additions to their workforce, or the development of new products? Why have traditional economic models of investment failed to explain the behavior of investment spending in the United States and other countries? In this book, Avinash Dixit and Robert Pindyck provide the first detailed exposition of a new theoretical approach to the capital investment decisions of firms, stressing the irreversibility of most investment decisions, and the ongoing uncertainty of the economic environment in which these decisions are made. In so doing, they answer important questions about investment decisions and the behavior of investment spending. This new approach to investment recognizes the option value of waiting for better (but never complete) information. It exploits an analogy with the theory of options in financial markets, which permits a much richer dynamic framework than was possible with the traditional theory of investment. The authors present the new theory in a clear and systematic way, and consolidate, synthesize, and extend the various strands of research that have come out of the theory. Their book shows the importance of the theory for understanding investment behavior of firms; develops the implications of this theory for industry dynamics and for government policy concerning investment; and shows how the theory can be applied to specific industries and to a wide variety of business problems.

Book Decision Making under Deep Uncertainty

Download or read book Decision Making under Deep Uncertainty written by Vincent A. W. J. Marchau and published by Springer. This book was released on 2019-04-04 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.

Book Optimal Decisions

    Book Details:
  • Author : Oskar Lange
  • Publisher : Elsevier
  • Release : 2014-05-17
  • ISBN : 1483148963
  • Pages : 303 pages

Download or read book Optimal Decisions written by Oskar Lange and published by Elsevier. This book was released on 2014-05-17 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Decisions: Principles of Programming deals with all important problems related to programming. This book provides a general interpretation of the theory of programming based on the application of the Lagrange multipliers, followed by a presentation of the marginal and linear programming as special cases of this general theory. The praxeological interpretation of the method of Lagrange multipliers is also discussed. This text covers the Koopmans' model of transportation, geometric interpretation of the programming problem, and nature of activity analysis. The solution of the problem by marginal analysis, Hurwitz and the Bayes-Laplace principles, and planning of production under uncertainty are likewise deliberated. This publication is a good source for researchers and specialists intending to acquire knowledge of the principles of programming.

Book Decision Making Under Uncertainty

Download or read book Decision Making Under Uncertainty written by Claude Greengard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the ideal world, major decisions would be made based on complete and reliable information available to the decision maker. We live in a world of uncertainties, and decisions must be made from information which may be incomplete and may contain uncertainty. The key mathematical question addressed in this volume is "how to make decision in the presence of quantifiable uncertainty." The volume contains articles on model problems of decision making process in the energy and power industry when the available information is noisy and/or incomplete. The major tools used in studying these problems are mathematical modeling and optimization techniques; especially stochastic optimization. These articles are meant to provide an insight into this rapidly developing field, which lies in the intersection of applied statistics, probability, operations research, and economic theory. It is hoped that the present volume will provide entry to newcomers into the field, and stimulation for further research.

Book Algorithms for Decision Making

Download or read book Algorithms for Decision Making written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2022-08-16 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.

Book Managerial Decisions Under Uncertainty

Download or read book Managerial Decisions Under Uncertainty written by Bruce F. Baird and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: How to improve decision-making skills in realistic situations and do it in a reasonably nonmathematical fashion. Develops practical techniques for deciding upon the best strategies in a variety of situations. Provides methods for reducing complex problems to easily-drawn decision diagrams (trees), supported by real-world examples. Includes detailed cases that employ the methods described in the text. Each chapter contains illustrative examples and exercises.

Book Introduction to Applied Optimization

Download or read book Introduction to Applied Optimization written by Urmila Diwekar and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a multi-disciplined view of optimization, providing students and researchers with a thorough examination of algorithms, methods, and tools from diverse areas of optimization without introducing excessive theoretical detail. This second edition includes additional topics, including global optimization and a real-world case study using important concepts from each chapter. Introduction to Applied Optimization is intended for advanced undergraduate and graduate students and will benefit scientists from diverse areas, including engineers.