EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Open Space Microfluidics

Download or read book Open Space Microfluidics written by Emmanuel Delamarche and published by John Wiley & Sons. This book was released on 2018-04-30 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summarizing the latest trends and the current state of this research field, this up-to-date book discusses in detail techniques to perform localized alterations on surfaces with great flexibility, including microfluidic probes, multifunctional nanopipettes and various surface patterning techniques, such as dip pen nanolithography. These techniques are also put in perspective in terms of applications and how they can be transformative of numerous (bio)chemical processes involving surfaces. The editors are from IBM Zurich, the pioneers and pacesetters in the field at the forefront of research in this new and rapidly expanding area.

Book Open Microfluidics

    Book Details:
  • Author : Jean Berthier
  • Publisher : John Wiley & Sons
  • Release : 2016-07-20
  • ISBN : 1118720822
  • Pages : 384 pages

Download or read book Open Microfluidics written by Jean Berthier and published by John Wiley & Sons. This book was released on 2016-07-20 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Open microfluidics or open-surface is becoming fundamental in scientific domains such as biotechnology, biology and space. First, such systems and devices based on open microfluidics make use of capillary forces to move fluids, without any need for external energy. Second, the "openness" of the flow facilitates the accessibility to the liquid in biotechnology and biology, and reduces the weight in space applications. This book has been conceived to give the reader the fundamental basis of open microfluidics. It covers successively The theory of spontaneous capillary flow, with the general conditions for spontaneous capillary flow, and the dynamic aspects of such flows. The formation of capillary filaments which are associated to small contact angles and sharp grooves. The study of capillary flow in open rectangular, pseudo-rectangular and trapezoidal open microchannels. The dynamics of open capillary flows in grooves with a focus on capillary resistors. The case of very viscous liquids is analyzed. An analysis of suspended capillary flows: such flows move in suspended channels devoid of top cover and bottom plate. Their accessibility is reinforced, and such systems are becoming fundamental in biology. An analysis of “rails” microfluidics, which are flows that move in channels devoid of side walls. This geometry has the advantage to be compatible with capillary networks, which are now of great interest in biotechnology, for molecular detection for example. Paper-based microfluidics where liquids wick flat paper matrix. Applications concern bioassays such as point of care devices (POC). Thread-based microfluidics is a new domain of investigation. It is seeing presently many new developments in the domain of separation and filtration, and opens the way to smart bandages and tissue engineering. The book is intended to cover the theoretical aspects of open microfluidics, experimental approaches, and examples of application.

Book Open Channel Microfluidics

Download or read book Open Channel Microfluidics written by Jean Berthier and published by Morgan & Claypool Publishers. This book was released on 2019-09-04 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Open microfluidics, the study of microflows having a boundary with surrounding air, encompasses different aspects such as paper or thread-based microfluidics, droplet microfluidics and open-channel microfluidics. Open-channel microflow is a flow at the micro-scale, guided by solid structures, and having at least a free boundary (with air or vapor) other than the advancing meniscus. This book is devoted to the study of open-channel microfluidics which (contrary to paper or thread or droplet microfluidics) is still very sparsely documented, but bears many new applications in biology, biotechnology, medicine, material and space sciences. Capillarity being the principal force triggering an open microflow, the principles of capillarity are first recalled. The onset of open-channel microflow is next analyzed and the fundamental notion of generalized Cassie angle (the apparent contact angle which accounts for the presence of air) is presented. The theory of the dynamics of open-channel microflows is then developed, using the notion of averaged friction length which accounts for the presence of air along the boundaries of the flow domain. Different channel morphologies are studied and geometrical features such as valves and capillary pumps are examined. An introduction to two-phase open-channel microflows is also presented showing that immiscible plugs can be transported by an open-channel flow. Finally, a selection of interesting applications in the domains of space, materials, medicine and biology is presented, showing the potentialities of open-channel microfluidics.

Book Multidisciplinary Microfluidic and Nanofluidic Lab on a Chip

Download or read book Multidisciplinary Microfluidic and Nanofluidic Lab on a Chip written by Xiujun (James) Li and published by Newnes. This book was released on 2021-09-19 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring. Provides calculations, solved problems, data tables and design rules to help understand microfluidic basic theory and principles Gives an applied understanding of the principles behind the design, manufacture, and testing of microfluidic systems Emphasizes on quickly developing and emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology

Book Microfluidics

Download or read book Microfluidics written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2022-01-16 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Microfluidics Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale at which surface forces dominate volumetric forces. It is a multidisciplinary field that involves engineering, physics, chemistry, biochemistry, nanotechnology, and biotechnology. It has practical applications in the design of systems that process low volumes of fluids to achieve multiplexing, automation, and high-throughput screening. Microfluidics emerged in the beginning of the 1980s and is used in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Microfluidics Chapter 2: Droplet-based microfluidics Chapter 3: Digital microfluidics Chapter 4: Paper-based microfluidics Chapter 5: Microfluidic cell culture Chapter 6: Electroosmotic pump Chapter 7: Materials science (II) Answering the public top questions about microfluidics. (III) Real world examples for the usage of microfluidics in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of microfluidics' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of microfluidics.

Book Microfluidics for Cellular Applications

Download or read book Microfluidics for Cellular Applications written by Gerardo Perozziello and published by Elsevier. This book was released on 2023-04-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics for Cellular Applications describes microfluidic devices for cell screening from a physical, technological and applications point-of-view, presenting a comparison with the cell microenvironment and conventional instruments used in medicine. Microfluidic technologies, protocols, devices for cell screening and treatment have reached an advanced state but are mainly used in research. Sections break them down into practical applications and conventional medical procedures and offers insights and analysis on how higher resolutions and fast operations can be reached. This is an important resource for those from an engineering and technology background who want to understand more and gain additional insights on cell screening processes. Outlines the major applications of microfluidic devices in medicine and biotechnology Assesses the major challenges of using microfluidic devices in terms of complexity of the control set-up, ease of use, integration capability, automation level, analysis throughput, content and costs Describes the major fabrication techniques for assembling effective microfluidic devices for bioapplications

Book Micro  and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems

Download or read book Micro and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems written by Sabu Thomas and published by Elsevier. This book was released on 2021-10-12 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized detection systems and micro/nanomachines are also reviewed. Subsequent chapters explore the emerging application of these mobile devices for miniaturized analysis in various fields, including medicine and biomedicine, environmental chemistry, food chemistry, and forensic chemistry. This is an important reference source for materials scientists and engineers wanting to understand how miniaturization techniques are being used to create a range of efficient, sustainable electronic and optical devices. Miniaturization describes the concept of manufacturing increasingly smaller mechanical, optical, and electronic products and devices. These smaller instruments can be used to produce micro- and nanoscale components required for analytical procedures. A variety of micro/nanoscale materials have been synthesized and used in analytical procedures, such as sensing materials, sorbents, adsorbents, catalysts, and reactors. The miniaturization of analytical instruments can be applied to the different steps of analytical procedures, such as sample preparation, analytical separation, and detection, reducing the total cost of manufacturing the instruments and the needed reagents and organic solvents. - Outlines how miniaturization techniques can be used to create new optical and electronic micro- and nanodevices - Explores major application areas, including biomedicine, environmental science and security - Assesses the major challenges of using miniaturization techniques

Book Enzyme Activity in Single Cells

Download or read book Enzyme Activity in Single Cells written by and published by Academic Press. This book was released on 2019-10-31 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enzyme Activity in Single Cells, Volume 628, the latest release in the Methods of Enzymology series, discusses groundbreaking cellular physiology research that is taking place in the biological sciences. Chapters in this new release cover Spatial and temporal resolution of caspase waves in single Xenopus eggs during apoptosis, Spatial and temporal organization of metabolic complexes in cells, Measuring cellular efflux and biomolecular delivery: synthetic approaches to imaging and engineering cells, Slide-based, single-cell enzyme assays, Single-cell assays using integrated continuous-flow microfluidics, High-throughput screening of single-cell lysates, Microfluidic capture of single cells for drug resistance assays, and much more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Enzymology series Includes the latest information on Enzyme Activity in Single Cells

Book Lab on a chip Devices for Advanced Biomedicines

Download or read book Lab on a chip Devices for Advanced Biomedicines written by Arpana Parihar and published by Royal Society of Chemistry. This book was released on 2024-08-14 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global miniature devices market is poised to surpass a valuation of $12–$15 billion USD by the year 2030. Lab-on-a-chip (LOC) devices are a vital component of this market. Comprising a network of microchannels, electrical circuits, sensors, and electrodes, LOC is a miniaturized integrated device platform used to streamline day-to-day laboratory functions, run cost-effective clinical analyses and curb the need for centralized instrumentation facilities in remote areas. Compact design, portability, ease of operation, low sample volume, short reaction time, and parallel investigation stand as the pivotal factors driving the widespread acceptance of LOC within the biomedical community. In this book, the Editors meticulously explore LOC through three key ‘Ts’: Theories (microfluidics, microarrays, instrumentation, software); Technologies (additive manufacturing, artificial intelligence, computational thinking, smart consumables, scale-up tactics, and biofouling); and Trends (biomedical analysis, point-of-care diagnostics, personalized healthcare, bioactive synthesis, disease diagnosis, and space applications) This comprehensive text not only provides readers with a thorough understanding of the current advancements in the LOC domain but also offers valuable insights to support the utilization of miniaturized devices for enhanced healthcare practices. Aimed at career researchers looking for instruction in the topic and newcomers to the area, the book is also useful for undergraduate and postgraduate students embarking on new studies or for those interested in reading about the LOC platform.

Book Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine

Download or read book Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine written by Ki-Taek Lim and published by Springer Nature. This book was released on 2022-12-15 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine "Nanorobotics and nanodiagnostics” can be defined as a new generation of biohybrid and nanorobotics that translate fundamental biological principles into engineering design rules, or integrative living components into synthetic structures to create biorobots and nanodiagnotics that perform like natural systems. Nanorobots or nanobots are structured of a nanoscale made of individual assemblies. They can be termed as intelligent systems manufactured with self-assembly strategies by chemical, physical and biological approaches. The nanorobot can determine the structure and enhance the adaptability to the environment in interdisciplinary tasks. "Nanorobotics and nanodiagnostics" is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. These biorobotics and diagnostics can now perform various missions to be accomplished certain tasks in the research areas such as integrative biology and biomedicine. "Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine" sheds light on a comprehensive overview of the multidisciplinary areas that explore nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries. /div

Book Microscale Physico chemical Interactions Between Hydrodynamically Confined Liquids and Immersed Biological Surfaces

Download or read book Microscale Physico chemical Interactions Between Hydrodynamically Confined Liquids and Immersed Biological Surfaces written by David Philipp Taylor and published by . This book was released on 2019 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mots-clés de l'auteur: Open-space microfluidics ; liquid scanning probes ; microfluidic probe ; biological interfaces ; hydrodynamic confinement ; surface processing.

Book The Detection of Biomarkers

Download or read book The Detection of Biomarkers written by Sibel A. Ozkan and published by Academic Press. This book was released on 2021-12-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliable, precise and accurate detection and analysis of biomarkers remains a significant challenge for clinical researchers. Methods for the detection of biomarkers are rather complex, requiring pre-treatment steps before analysis can take place. Moreover, comparing various biomarker assays and tracing research progress in this area systematically is a challenge for researchers. The Detection of Biomarkers presents developments in biomarker detection, including methods tools and strategies, biosensor design, materials, and applications. The book presents methods, materials and procedures that are simple, precise, sensitive, selective, fast and economical, and therefore highly practical for use in clinical research scenarios. This volume situates biomarker detection in its research context and sets out future prospects for the area. Its 20 chapters offer a comprehensive coverage of biomarkers, including progress on nanotechnology, biosensor types, synthesis, immobilization, and applications in various fields. The book also demonstrates, for students, how to synthesize and immobilize biosensors for biomarker assay. It offers researchers real alternative and innovative ways to think about the field of biomarker detection, increasing the reliability, precision and accuracy of biomarker detection. Locates biomarker detection in its research context, setting out present and future prospects Allows clinical researchers to compare various biomarker assays systematically Presents new methods, materials and procedures that are simple, precise, sensitive, selective, fast and economical Gives innovative biomarker assays that are viable alternatives to current complex methods Helps clinical researchers who need reliable, precise and accurate biomarker detection methods

Book Microfluidics Diagnostics

    Book Details:
  • Author : Valérie Taly
  • Publisher : Springer Nature
  • Release :
  • ISBN : 1071638505
  • Pages : 254 pages

Download or read book Microfluidics Diagnostics written by Valérie Taly and published by Springer Nature. This book was released on with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microfluidics for Single Cell Analysis

Download or read book Microfluidics for Single Cell Analysis written by Jin-Ming Lin and published by Springer Nature. This book was released on 2019-08-28 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.

Book Microfluidics in Cell Biology Part B  Microfluidics in Single Cells

Download or read book Microfluidics in Cell Biology Part B Microfluidics in Single Cells written by and published by Academic Press. This book was released on 2018-08-27 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics in Cell Biology Part B: Microfluidics in Single Cells, Volume 147, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are three sections on microfluidics in various single cell models, including microfludics in micro-organisms, microfluidics for cell culture and cell sorting of mammalian cells, and microfluidics for cell migration. Specific sections in this latest release include Temperature control and drug delivery for cell division cycle control in fission yeast H2O2 stress response in budding yeast, Antibiotic resistance in bacteria, Metabolism in bacteria, Fluidized beds for bacterial sorting and amplification, Microfluidics for cell culture and cell sorting of mammalian cells, Hydrogel microwells, Immune cells migration in complex environments, Neutrophiles migration in health and disease, Cell guidance by physical cues, Stable gradients in gels of extracellular matrix for cancer cell migration, and more. Contains contributions from experts in the field from across the world Covers a wide array of topics on both mitosis and meiosis Includes relevant, analysis based topics

Book Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber Physical Microfluidic Platforms

Download or read book Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber Physical Microfluidic Platforms written by Mohamed Ibrahim and published by CRC Press. This book was released on 2020-05-31 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: A microfluidic biochip is an engineered fluidic device that controls the flow of analytes, thereby enabling a variety of useful applications. According to recent studies, the fields that are best set to benefit from the microfluidics technology, also known as lab-on-chip technology, include forensic identification, clinical chemistry, point-of-care (PoC) diagnostics, and drug discovery. The growth in such fields has significantly amplified the impact of microfluidics technology, whose market value is forecast to grow from $4 billion in 2017 to $13.2 billion by 2023. The rapid evolution of lab-on-chip technologies opens up opportunities for new biological or chemical science areas that can be directly facilitated by sensor-based microfluidics control. For example, the digital microfluidics-based ePlex system from GenMarkDx enables automated disease diagnosis and can bring syndromic testing near patients everywhere. However, as the applications of molecular biology grow, the adoption of microfluidics in many applications has not grown at the same pace, despite the concerted effort of microfluidic systems engineers. Recent studies suggest that state-of-the-art design techniques for microfluidics have two major drawbacks that need to be addressed appropriately: (1) current lab-on-chip systems were only optimized as auxiliary components and are only suitable for sample-limited analyses; therefore, their capabilities may not cope with the requirements of contemporary molecular biology applications; (2) the integrity of these automated lab-on-chip systems and their biochemical operations are still an open question since no protection schemes were developed against adversarial contamination or result-manipulation attacks. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms provides solutions to these challenges by introducing a new design flow based on the realistic modeling of contemporary molecular biology protocols. It also presents a microfluidic security flow that provides a high-level of confidence in the integrity of such protocols. In summary, this book creates a new research field as it bridges the technical skills gap between microfluidic systems and molecular biology protocols but it is viewed from the perspective of an electronic/systems engineer.

Book Biological Applications of Microfluidics

Download or read book Biological Applications of Microfluidics written by Frank A. Gomez and published by John Wiley & Sons. This book was released on 2008-02-15 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics has numerous potential applications in biotechnology, pharmaceuticals, the life sciences, defense, public health, and agriculture. This book details recent advances in the biological applications of microfluidics, including cell sorting, DNA sequencing on-a-chip, microchip capillary electrophoresis, and synthesis on a microfluidic format. It covers microfabricated LOC technologies, advanced microfluidic tools, microfluidic culture platforms for stem cell and neuroscience research, and more. This is an all-in-one, hands-on resource for analytical chemists and researchers and an excellent text for students.