Download or read book Particle Image Velocimetry written by Ronald J. Adrian and published by Cambridge University Press. This book was released on 2011 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle image velocimetry, or PIV, refers to a class of methods used in experimental fluid mechanics to determine instantaneous fields of the vector velocity by measuring the displacements of numerous fine particles that accurately follow the motion of the fluid. Although the concept of measuring particle displacements is simple in essence, the factors that need to be addressed to design and implement PIV systems that achieve reliable, accurate, and fast measurements and to interpret the results are surprisingly numerous. The aim of this book is to analyze and explain them comprehensively.
Download or read book Technical Note written by and published by . This book was released on 1977 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Liutex and Its Applications in Turbulence Research written by Chaoqun Liu and published by Academic Press. This book was released on 2020-10-29 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. - Provides an accurate mathematical definition of vortices - Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence - Explains the term "Rortex as a mathematically defined rigid rotation of fluids or vortex - Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence
Download or read book Vortex Methods Selected Papers Of The First International Conference On Vortex Methods written by Kyoji Kamemoto and published by World Scientific. This book was released on 2000-05-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vortex methods have been developed and applied to many kinds of flows related to various problems in wide engineering and scientific fields. The purpose of the First International conference on Vortex methods was to provide an opportunity for engineers and scientists to present their achievements, exchange ideas and discuss new developments in mathematical and physical modeling techniques and engineering applications of vortex methods.
Download or read book Fundamentals of Dispersed Multiphase Flows written by S. Balachandar and published by Cambridge University Press. This book was released on 2024-03-28 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dispersed multiphase flows are frequently found in nature and have diverse geophysical, environmental, industrial, and energy applications. This book targets a beginning graduate student looking to learn about the physical processes that govern these flows, going from the fundamentals to the state of the art, with many exercises included.
Download or read book Bubble Wake Dynamics in Liquids and Liquid Solid Suspensions written by Liang-Shih Fan and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to a fundamental understanding of the fluid dynamic nature of a bubble wake, more specifically the primary wake, in liquids and liquid-solid suspensions, an dto the role it plays in various important flow phenomena of multiphase systems. Examples of these phenomena are liquid/solids mixing, bubble coalescence and disintergration, particle entrainment to the freeboard, and bed contraction.
Download or read book The Structure of Sphere Wakes at Intermediate Reynolds Numbers in Still and Turbulent Environments written by Jong-Shinn Wu and published by . This book was released on 1994 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Proceedings of the IUTAM Symposium on Turbulent Structure and Particles Turbulence Interaction written by Xiaojing Zheng and published by Springer Nature. This book was released on 2024-01-02 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 'IUTAM Symposium on Turbulent Structure and Particles' held in 2023. It provides a comprehensive overview of the latest research and developments in the field of turbulent dispersed multiphase flows. The book features contributions from experts in academia and industry, covering a range of topics including droplet and pollutant dispersion, sand/dust storms, sediment transport in water or air flows, fluidized beds, bubbly flows and more. The content is a valuable reference for researchers, engineers, and students who are interested in understanding the complex behavior of multiphase flows in different natural and industrial environments.
Download or read book Turbulence in Rotating Stratified and Electrically Conducting Fluids written by P. A. Davidson and published by Cambridge University Press. This book was released on 2013-09-12 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two recurring themes in astrophysical and geophysical fluid mechanics: waves and turbulence. This book investigates how turbulence responds to rotation, stratification or magnetic fields, identifying common themes, where they exist, as well as the essential differences which inevitably arise between different classes of flow. The discussion is developed from first principles, making the book suitable for graduate students as well as professional researchers. The author focuses first on the fundamentals and then progresses to such topics as the atmospheric boundary layer, turbulence in the upper atmosphere, turbulence in the core of the earth, zonal winds in the giant planets, turbulence within the interior of the sun, the solar wind, and turbulent flows in accretion discs. The book will appeal to engineers, geophysicists, astrophysicists and applied mathematicians who are interested in naturally occurring turbulent flows.
Download or read book Frontiers of Fluid Mechanics written by Shen Yuan and published by Elsevier. This book was released on 2013-10-22 with total page 1288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frontiers of Fluid Mechanics documents the proceedings of the Beijing International Conference on Fluid Mechanics, held in Beijing, People's Republic of China, 1-4 July 1987. The aims of the conference were to provide a forum for a cross-sectional review of the state-of-the-art and new advances in various branches of fluid mechanics, and to promote the exchange of ideas by experts from different parts of the world. The contributions made by researchers at the conference are organized into 18 parts. Part 1 presents invited lectures covering topics such as separated flow, porous flow, and turbulence modeling. Part 2 contains papers dealing with turbulence. Parts 3, 4, and 5 include studies on flow stability and transition, transonic flow, and boundary layer flows and shock waves, respectively. Part 6 is devoted to aerodynamics and gas dynamics. Part 7 examines water waves while Part 8 is devoted to hydrodynamics and hydraulics. The papers in Part 9 examine bubbles and drops. Part 10 deals with experiments involving vortices, jets, wakes, and cavities. Part 11 contains studies on geophysical and astrophysical fluid mechanics. Parts 12 and 13 investigate two-phase flow and flow through porous media, and non-Newtonian flow, respectively. Part 14 takes up magneto-hydrodynamics and physic-chemical flow. Part 15 covers biofluid mechanics. Part 16 contains papers on industrial and environmental fluid mechanics while Part 17 deals with heat transfer. Part 18 contains papers that were received after the conference.
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1972 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Turbulent Flows written by Jean Piquet and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1973 with total page 1064 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hydrodynamics Around Cylindrical Structures written by Jorgen Fredsoe and published by World Scientific. This book was released on 1997-03-17 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the subject of wave/current flow around a cylinder, the forces induced on the cylinder by the flow, and the vibration pattern of slender structures in a marine environment.The primary aim of the book is to describe the flow pattern and the resulting load which develops when waves or current meet a cylinder. Attention is paid to the special case of a circular cylinder. The development in the forces is related to the various flow patterns and is discussed in detail. Regular as well as irregular waves are considered, and special cases like wall proximities (pipelines) are also investigated.The book is intended for MSc students with some experience in basic fluid mechanics and for PhD students.
Download or read book Numerical Analysis and Its Applications written by Ivan Dimov and published by Springer. This book was released on 2013-10-01 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes thoroughly revised selected papers of the 5th International Conference on Numerical Analysis and Its Applications, NAA 2012, held in Lozenetz, Bulgaria, in June 2012. The 65 revised papers presented were carefully reviewed and selected from various submissions. The papers cover a broad area of topics of interest such as numerical approximation and computational geometry; numerical linear algebra and numerical solution of transcendental equation; numerical methods for differential equations; numerical stochastics, numerical modeling; and high performance scientific computing.
Download or read book IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow written by Alexander J. Smits and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents selected papers from the IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, convened in Princeton, NJ, USA, September I1-13, 2002. The behavior ofturbulence at high Reynolds number is interesting from a fundamental point of view, in that most theories of turbulence make very specific predictions in the limit of infinite Reynolds number. From a more practical point of view, there exist many applications that involve turbulent flow where the Reynolds numbers are extremely large. For example, large vehicles such as submarines and commercial transports operate at Reynolds 9 numbers based on length ofthe order oft0 , and industrial pipe flows cover a 7 very wide range of Reynolds numbers up to 10 • Many very important applications of high Reynolds number flow pertain to atmospheric and other geophysical flows where extremely high Reynolds numbers are the rule rather than the exception, and the understanding of climate changes and the prediction of destructive weather effects hinges to some extent on our appreciation ofhigh-Reynolds number turbulence behavior. The important effects of Reynolds number on turbulence has received a great deal of recent attention. The objective of the Symposium was to bring together many of the world's experts in this area to appraise the new experimental results, discuss new scaling laws and turbulence models, and to enhance our mutual understanding of turbulence.
Download or read book Parallel Computational Fluid Dynamics 2003 written by Boris Chetverushkin and published by Elsevier. This book was released on 2004-05-06 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to using of parallel multiprocessor computer systems for numerical simulation of the problems which can be described by the equations of continuum mechanics. Parallel algorithms and software, the problems of meta-computing are discussed in details, some results of high performance simulation of modern gas dynamic problems, combustion phenomena, plasma physics etc are presented.·Parallel Algorithms for Multidisciplinary Studies