EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Selected Works of Peter J  Bickel

Download or read book Selected Works of Peter J Bickel written by Jianqing Fan and published by Springer Science & Business Media. This book was released on 2012-11-28 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents selections of Peter J. Bickel’s major papers, along with comments on their novelty and impact on the subsequent development of statistics as a discipline. Each of the eight parts concerns a particular area of research and provides new commentary by experts in the area. The parts range from Rank-Based Nonparametrics to Function Estimation and Bootstrap Resampling. Peter’s amazing career encompasses the majority of statistical developments in the last half-century or about about half of the entire history of the systematic development of statistics. This volume shares insights on these exciting statistical developments with future generations of statisticians. The compilation of supporting material about Peter’s life and work help readers understand the environment under which his research was conducted. The material will also inspire readers in their own research-based pursuits. This volume includes new photos of Peter Bickel, his biography, publication list, and a list of his students. These give the reader a more complete picture of Peter Bickel as a teacher, a friend, a colleague, and a family man.

Book Semiparametric Theory and Missing Data

Download or read book Semiparametric Theory and Missing Data written by Anastasios Tsiatis and published by Springer Science & Business Media. This book was released on 2007-01-15 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.

Book Handbook of Missing Data Methodology

Download or read book Handbook of Missing Data Methodology written by Geert Molenberghs and published by CRC Press. This book was released on 2014-11-06 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.

Book Applied Missing Data Analysis in the Health Sciences

Download or read book Applied Missing Data Analysis in the Health Sciences written by Xiao-Hua Zhou and published by John Wiley & Sons. This book was released on 2014-05-19 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Missing Data Analysis in the Health Sciences A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.

Book Robust Statistics  Data Analysis  and Computer Intensive Methods

Download or read book Robust Statistics Data Analysis and Computer Intensive Methods written by Helmut Rieder and published by Springer. This book was released on 1996 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers together a wide range of contributions on modern techniques which are becoming widely used in statistics. These methods include the bootstrap, nonparametric density estimation, robust regression, and projections and sections.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2006 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Frontiers In Statistics

Download or read book Frontiers In Statistics written by Jianqing Fan and published by World Scientific. This book was released on 2006-07-17 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last two decades, many areas of statistical inference have experienced phenomenal growth. This book presents a timely analysis and overview of some of these new developments and a contemporary outlook on the various frontiers of statistics.Eminent leaders in the field have contributed 16 review articles and 6 research articles covering areas including semi-parametric models, data analytical nonparametric methods, statistical learning, network tomography, longitudinal data analysis, financial econometrics, time series, bootstrap and other re-sampling methodologies, statistical computing, generalized nonlinear regression and mixed effects models, martingale transform tests for model diagnostics, robust multivariate analysis, single index models and wavelets.This volume is dedicated to Prof. Peter J Bickel in honor of his 65th birthday. The first article of this volume summarizes some of Prof. Bickel's distinguished contributions.

Book Missing Data Methods

Download or read book Missing Data Methods written by David M. Drukker and published by Emerald Group Publishing. This book was released on 2011-11-23 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains 16 chapters authored by specialists in the field, covering topics such as: Missing-Data Imputation in Nonstationary Panel Data Models; Markov Switching Models in Empirical Finance; Bayesian Analysis of Multivariate Sample Selection Models Using Gaussian Copulas; and, Consistent Estimation and Orthogonality.

Book Statistical Analysis with Missing Data

Download or read book Statistical Analysis with Missing Data written by Roderick J. A. Little and published by John Wiley & Sons. This book was released on 2014-08-25 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Emphasizes the latest trends in the field. * Includes a new chapter on evolving methods. * Provides updated or revised material in most of the chapters.

Book Multiple Imputation of Missing Data in Practice

Download or read book Multiple Imputation of Missing Data in Practice written by Yulei He and published by CRC Press. This book was released on 2021-11-19 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community. Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book). Key Features Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.) Explores measurement error problems with multiple imputation Discusses analysis strategies for multiple imputation diagnostics Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)

Book Handbook of Adaptive Designs in Pharmaceutical and Clinical Development

Download or read book Handbook of Adaptive Designs in Pharmaceutical and Clinical Development written by Annpey Pong and published by CRC Press. This book was released on 2016-04-19 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the US FDA's Critical Path Initiative, innovative adaptive designs are being used more and more in clinical trials due to their flexibility and efficiency, especially during early phase development. Handbook of Adaptive Designs in Pharmaceutical and Clinical Development provides a comprehensive and unified presentation of the princip

Book Estimands  Estimators and Sensitivity Analysis in Clinical Trials

Download or read book Estimands Estimators and Sensitivity Analysis in Clinical Trials written by Craig Mallinckrodt and published by CRC Press. This book was released on 2019-12-23 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concepts of estimands, analyses (estimators), and sensitivity are interrelated. Therefore, great need exists for an integrated approach to these topics. This book acts as a practical guide to developing and implementing statistical analysis plans by explaining fundamental concepts using accessible language, providing technical details, real-world examples, and SAS and R code to implement analyses. The updated ICH guideline raises new analytic and cross-functional challenges for statisticians. Gaps between different communities have come to surface, such as between causal inference and clinical trialists, as well as among clinicians, statisticians, and regulators when it comes to communicating decision-making objectives, assumptions, and interpretations of evidence. This book lays out a path toward bridging some of these gaps. It offers  A common language and unifying framework along with the technical details and practical guidance to help statisticians meet the challenges  A thorough treatment of intercurrent events (ICEs), i.e., postrandomization events that confound interpretation of outcomes and five strategies for ICEs in ICH E9 (R1)  Details on how estimands, integrated into a principled study development process, lay a foundation for coherent specification of trial design, conduct, and analysis needed to overcome the issues caused by ICEs:  A perspective on the role of the intention-to-treat principle  Examples and case studies from various areas  Example code in SAS and R  A connection with causal inference  Implications and methods for analysis of longitudinal trials with missing data Together, the authors have offered the readers their ample expertise in clinical trial design and analysis, from an industrial and academic perspective.

Book Linear Models

    Book Details:
  • Author : C.Radhakrishna Rao
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 1489900241
  • Pages : 360 pages

Download or read book Linear Models written by C.Radhakrishna Rao and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is based on both authors' several years of experience in teaching linear models at various levels. It gives an up-to-date account of the theory and applications of linear models. The book can be used as a text for courses in statistics at the graduate level and as an accompanying text for courses in other areas. Some of the highlights in this book are as follows. A relatively extensive chapter on matrix theory (Appendix A) provides the necessary tools for proving theorems discussed in the text and offers a selection of classical and modern algebraic results that are useful in research work in econometrics, engineering, and optimization theory. The matrix theory of the last ten years has produced a series of fundamental results about the definiteness of matrices, especially for the differences of matrices, which enable superiority comparisons of two biased estimates to be made for the first time. We have attempted to provide a unified theory of inference from linear models with minimal assumptions. Besides the usual least-squares theory, alternative methods of estimation and testing based on convex loss func tions and general estimating equations are discussed. Special emphasis is given to sensitivity analysis and model selection. A special chapter is devoted to the analysis of categorical data based on logit, loglinear, and logistic regression models. The material covered, theoretical discussion, and its practical applica tions will be useful not only to students but also to researchers and con sultants in statistics.

Book Statistical Methods for Handling Incomplete Data

Download or read book Statistical Methods for Handling Incomplete Data written by Jae Kwang Kim and published by CRC Press. This book was released on 2021-11-19 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data. Features Uses the mean score equation as a building block for developing the theory for missing data analysis Provides comprehensive coverage of computational techniques for missing data analysis Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data Describes a survey sampling application Updated with a new chapter on Data Integration Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.

Book Multiple Imputation and its Application

Download or read book Multiple Imputation and its Application written by James Carpenter and published by John Wiley & Sons. This book was released on 2012-12-19 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to analysing partially observed data. Collecting, analysing and drawing inferences from data is central to research in the medical and social sciences. Unfortunately, it is rarely possible to collect all the intended data. The literature on inference from the resulting incomplete data is now huge, and continues to grow both as methods are developed for large and complex data structures, and as increasing computer power and suitable software enable researchers to apply these methods. This book focuses on a particular statistical method for analysing and drawing inferences from incomplete data, called Multiple Imputation (MI). MI is attractive because it is both practical and widely applicable. The authors aim is to clarify the issues raised by missing data, describing the rationale for MI, the relationship between the various imputation models and associated algorithms and its application to increasingly complex data structures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partially observed data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider when analysing incomplete data from both observational studies and randomized trials. Provides a detailed discussion of the practical use of MI with real-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactions with multiple imputation, survival analysis, multilevel multiple imputation, sensitivity analysis via multiple imputation, using non-response weights with multiple imputation and doubly robust multiple imputation. Multiple Imputation and its Application is aimed at quantitative researchers and students in the medical and social sciences with the aim of clarifying the issues raised by the analysis of incomplete data data, outlining the rationale for MI and describing how to consider and address the issues that arise in its application.

Book Frontiers of Biostatistical Methods and Applications in Clinical Oncology

Download or read book Frontiers of Biostatistical Methods and Applications in Clinical Oncology written by Shigeyuki Matsui and published by Springer. This book was released on 2017-10-03 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art of biostatistical methods and their applications in clinical oncology. Many methodologies established today in biostatistics have been brought about through its applications to the design and analysis of oncology clinical studies. This field of oncology, now in the midst of evolution owing to rapid advances in biotechnologies and cancer genomics, is becoming one of the most promising disease fields in the shift toward personalized medicine. Modern developments of diagnosis and therapeutics of cancer have also been continuously fueled by recent progress in establishing the infrastructure for conducting more complex, large-scale clinical trials and observational studies. The field of cancer clinical studies therefore will continue to provide many new statistical challenges that warrant further progress in the methodology and practice of biostatistics. This book provides a systematic coverage of various stages of cancer clinical studies. Topics from modern cancer clinical trials include phase I clinical trials for combination therapies, exploratory phase II trials with multiple endpoints/treatments, and confirmative biomarker-based phase III trials with interim monitoring and adaptation. It also covers important areas of cancer screening, prognostic analysis, and the analysis of large-scale molecular data in the era of big data.