Download or read book Numerics of Unilateral Contacts and Friction written by Christian Studer and published by Springer Science & Business Media. This book was released on 2009-05-06 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics provides the link between mathematics and practical engineering app- cations. It is one of the oldest sciences, and many famous scientists have left and will leave their mark in this fascinating ?eld of research. Perhaps one of the most prominentscientists in mechanics was Sir Isaac Newton, who with his “laws of - tion” initiated the description of mechanical systems by differential equations. And still today, more than 300 years after Newton, this mathematical concept is more actual than ever. The rising computer power and the development of numerical solvers for diff- ential equations allowed engineersall over the world to predict the behavior of their physical systems fast and easy in an numerical way. And the trend to computational simulation methods is still further increasing, not only in mechanics, but practically in all branches of science. Numerical simulation will probablynot solve the world’s engineering problems, but it will help for a better understanding of the mechanisms of our models.
Download or read book Nonsmooth Mechanics and Applications written by J.J. Moreau and published by Springer. This book was released on 2014-05-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Art of Modeling Mechanical Systems written by Friedrich Pfeiffer and published by Springer. This book was released on 2016-09-14 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume present rules for mechanical models in a general systematic way, always in combination with small and large examples, many from industry, illustrating the most important features of modeling. The best way to reach a good solution is discussed. The papers address researchers and engineers from academia and from industry, doctoral students and postdocs, working in the fields of mechanical, civil and electrical engineering as well as in fields like applied physics or applied mathematics.
Download or read book Exploiting the Use of Strong Nonlinearity in Dynamics and Acoustics written by Oleg V. Gendelman and published by Springer Nature. This book was released on with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Micromechanics of Granular Materials written by Bernard Cambou and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nearly all solids are compised of grains. However most studies treat materials as a continious solid. The book applies analysis used on loose granular materials to dense grainular materials. This title’s main focus is devoted to static or dynamic loadings applied to dense materials, although rapid flows and widely dispersed media are also mentioned briefly. Three essential areas are covered: Local variable analysis: Contact forces, displacements and rotations, orientation of contacting particles and fabric tensors are all examples of local variables. Their statistical distributions, such as spatial distribution and possible localization, are analyzed, taking into account experimental results or numerical simulations. Change of scales procedures: Also known as “homogenization techniques”, these procedures make it possible to construct continuum laws to be used in a continuum mechanics approach or performing smaller scale analyses. Numerical modeling: Several methods designed to calculate approximate solutions of dynamical equations together with unilateral contact and frictional laws are presented, including molecular dynamics, the distinct element method and non-smooth contact dynamics. Numerical examples are given and the quality of numerical approximations is discussed.
Download or read book Contact Problems in Elasticity written by N. Kikuchi and published by SIAM. This book was released on 1988-01-01 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes. Among the novel results presented here are algorithms for contact problems with nonlinear and nonlocal friction, and very effective algorithms for solving problems involving the large elastic deformation of hyperelastic bodies with general contact conditions. Includes detailed discussion of numerical methods for nonlinear materials with unilateral contact and friction, with examples of metalforming simulations. Also presents algorithms for the finite deformation rolling contact problem, along with a discussion of numerical examples.
Download or read book Multibody Dynamics written by Zdravko Terze and published by Springer. This book was released on 2014-06-26 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical applications and nano-technologies. The chapters of this volume are based on the revised and extended versions of the selected scientific papers from amongst 255 original contributions that have been accepted to be presented within the program of the distinguished international ECCOMAS conference. It reflects state-of-the-art in the advances of multibody dynamics, providing excellent insight in the recent scientific developments in this prominent field of computational mechanics and contemporary engineering.
Download or read book IUTAM Symposium on Unilateral Multibody Contacts written by F. Pfeiffer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multibody dynamics started with the ideas of Jacob and Daniel Bernoul li and later on with d'Alembert's principle. In establishing a solution for the problem of the center of oscillation for a two-mass-pendulum Jacob Ber noulli spoke about balancing the profit-and-Ioss account with respect to the motion of the two masses. Daniel Bernoulli extended these ideas to a chain pendulum and called forces not contributing to the motion "lost forces", thus being already very close to d'Alembert's principle. D'Alembert considered a "system of bodies, which are interconnected in some arbitrary way. " He suggested separating the motion into two parts, one moving, the other being at rest. In modern terms, or at least in terms being applied in engineering mechanics, this means that the forces acting on a system of bodies are split into active and passive forces. Active forces generate motion, passive forces do not; they are a result of constraints. This interpretation of d'Alembert's principle is due to Lagrange and up to now has been the basis of multi body dynamics (D' Alembert, Traite de Dynamique, 1743; Lagrange, Mecanique Analytique, 1811). Thus, multibody dynamics started in France. During the nineteenth century there were few activities in the multi body field even though industry offered plenty of possible applications and famous re presentatives of mechanics were aware of the problems related to multibody dynamics. Poisson in his "Traite de Mecanique" (Paris 1833) gave an im pressive description of these problems, including impacts and friction.
Download or read book Multibody Dynamics with Unilateral Contacts written by Friedrich Pfeiffer and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: As mechanical systems become more complex so do the mathematical models and simulations used to describe the interactions of their parts. One area of multibody theory that has received a great deal of attention in recent years is the dynamics of multiple contact situations occurring in continuous joints and couplings. Despite the rapid gains in our understanding of what occurs when continuous joints and couplings interact, until now there were no books devoted exclusively to this intriguing phenomenon. Focusing on the concerns of practicing engineers, Multibody Dynamics with Unilateral Contacts presents all theoretical and applied aspects of this subject relevant to a practical understanding of multiple unilateral contact situations in multibody mechanical systems. In Part 1, Professor Pfeiffer and Dr. Glocker provide an exhaustive review of the laws and principles governing the dynamics of unilateral contacts in multibody mechanical and technical systems. Among the topics covered are multibody and contact kinematics, the dynamics of rigid body systems, multiple contact configurations, detachment and stick-slip transitions, frictionless impacts, impacts with friction, and the Corner law of contact dynamics. In Part 2, the authors present numerous applications of the theories presented in Part 1. Each chapter in this part is devoted to a different law, theory, or model, such as discontinuous force laws, classical impact theory, Coulomb's friction law, and mechanical and mathematical models of impacts and friction. In addition, each chapter features several practical examples that allow engineers to observe the concepts described in action. Examples are drawn from a broad array of fields and range from hammering in gears as occurring in a synchronous generator to impacts and friction as observed in a child's woodpecker toy, from a demonstration of classical impact theory using an automobile gear box example, to Coulomb's friction law as applied to a turbine blade damper. Multibody Dynamics with Unilateral Contacts is an indispensable resource for mechanical engineers working on all types of multibody systems and the friction and vibration problems that can occur in them. It is also a valuable reference for researchers studying nonlinear dynamics. The only book devoted entirely to the theory and applications of onE of the most crucial aspects of multibody system design. This is the first book to focus exclusively on the theory and applications of multiple contact situations occurring in continuous joints and couplings in multibody systems. As such, it is a valuable resource for engineers working on mechanical systems with interrelated multiple parts. Multibody Dynamics with Unilateral Contacts * Provides a comprehensive examination of the laws and principles governing the dynamics of unilateral contacts in multibody mechanical and technical systems. * Presents the latest mathematical models and simulation techniques for describing the interactions of joints and couplings in multibody systems. * Describes practical applications for all the concepts covered. * Includes numerous examples drawn from a wide range of fascinating and enlightening real-world demonstrations, including everything from an airplane's landing gear to a child's toy.
Download or read book Analysis and Simulation of Contact Problems written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2006-08-15 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This carefully edited book offers a state-of-the-art overview on formulation, mathematical analysis and numerical solution procedures of contact problems. The contributions collected in this volume summarize the lectures presented by leading scientists in the area of contact mechanics, during the 4th Contact Mechanics International Symposium (CMIS) held in Hannover, Germany, 2005.
Download or read book Numerical Methods for Nonsmooth Dynamical Systems written by Vincent Acary and published by Springer Science & Business Media. This book was released on 2008-01-30 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.
Download or read book Computational Contact Mechanics written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2006-10-06 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the valuable reference source for numerical simulations of contact mechanics suitable for many fields. These include civil engineering, car design, aeronautics, metal forming, or biomechanics. For this second edition, illustrative simplified examples and new discretisation schemes and adaptive procedures for coupled problems are added. This book is at the cutting edge of an area of significant and growing interest in computational mechanics.
Download or read book Geomechanics from Micro to Macro written by Kenichi Soga and published by CRC Press. This book was released on 2014-08-26 with total page 1668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geomechanics from Micro to Macro contains 268 papers presented at the International Symposium on Geomechanics from Micro and Macro (IS-Cambridge, UK, 1-3 September 2014). The symposium created a forum for the dissemination of new advances in the micro-macro relations of geomaterial behaviour and its modelling. The papers on experimental investigati
Download or read book Set Valued Force Laws written by Christoph Glocker and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: As one of the oldest natural sciences, mechanics occupies a certain pioneering role in determining the development of exact sciences through its interaction with mathematics. As a matter of fact, there is hardly an area in mathematics that hasn't found an application of some form in mechanics. It is thus almost inevitable that theoretical methods in mechanics are highly developed and laid out on different levels of abstraction. With the spread of digital processors this goes as far as the implementation in commercial computer codes, where the user is merely con fronted on the surface with the processes that run in the background, i. e. mechan ics as such: in teaching and research, as well as in the context of industry, me chanics is much more, and must remain much more than the mere production of data with the help of a processor. Mechanics, as it is talked about here, tradition ally includes a wide spectrum, ranging from applied mechanics, analytical and technical mechanics to modeling. and experimental mechanics, as well as technical realization. It also includes the subdisciplines of rigid body mechanics, continuum mechanics, or fluid mechanics, to mention only a few. One of the fundamental and most important concepts used by nearly all natural sciences is the concept of linearization, which assumes the differentiability of mappings. As a matter of fact, all of classical mechanics is based on the avail ability of this quality.
Download or read book Computational Kinematics written by Saïd Zeghloul and published by Springer. This book was released on 2017-07-03 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings of IFToMM CK 2017, the 7th International Workshop on Computational Kinematics that was held in Futuroscope-Poitiers, France in May 2017. Topics treated include: kinematic design and synthesis, computational geometry in kinematics, motion analysis and synthesis, theory of mechanisms, mechanism design, kinematical analysis of serial and parallel robots, kinematical issues in biomechanics, molecular kinematics, kinematical motion analysis and simulation, geometric constraint solvers, deployable and tensegrity structures, robot motion planning, applications of computational kinematics, education in computational kinematics, and theoretical foundations of kinematics. Kinematics is an exciting area of computational mechanics and plays a central role in a great variety of fields and industrial applications nowadays. Apart from research in pure kinematics, the field deals with problems of practical relevance that need to be solved in an interdisciplinary manner in order for new technologies to develop. The results presented in this book should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics.
Download or read book Novel Approaches in Civil Engineering written by Michel Fremond and published by Springer Science & Business Media. This book was released on 2013-09-10 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this edited book various novel approaches to problems of current interest in civil engineering are demonstrated. The topics range from dynamic band seismic problems to the analysis of long-span structures and ancient buildings. Experts associated within the Lagrange Laboratory present recent research results on functionally-graded or composite materials, granular materials, geotechnics, as well as frictional or adhesive contact problems.
Download or read book Proceedings of the 1st International Conference on Numerical Modelling in Engineering written by Magd Abdel Wahab and published by Springer. This book was released on 2018-08-25 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains manuscripts of topics related to numerical modeling in Civil Engineering (Volume 1) as part of the proceedings of the 1st International Conference on Numerical Modeling in Engineering (NME 2018), which was held in the city of Ghent, Belgium. The overall objective of the conference is to bring together international scientists and engineers in academia and industry in fields related to advanced numerical techniques, such as FEM, BEM, IGA, etc., and their applications to a wide range of engineering disciplines. This volume covers industrial engineering applications of numerical simulations to Civil Engineering, including: Bridges and dams, Cyclic loading, Fluid dynamics, Structural mechanics, Geotechnical engineering, Thermal analysis, Reinforced concrete structures, Steel structures, Composite structures.