EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Simulation based Design

Download or read book Numerical Simulation based Design written by Xu Han and published by Springer. This book was released on 2020-01-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on numerical simulation-based design theory and methods in mechanical engineering. The simulation-based design of mechanical equipmentinvolves considerable scientific challenges including extremely complex systems,extreme working conditions, multi-source uncertainties, multi-physics coupling, andlarge-scale computation. In order to overcome these technical difficulties, this booksystematically elaborates upon the advanced design methods, covering high-fidelitysimulation modeling, rapid structural analysis, multi-objective design optimization,uncertainty analysis and optimization, which can effectively improve the designaccuracy, efficiency, multi-functionality and reliability of complicated mechanicalstructures. This book is primarily intended for researchers, engineers and postgraduate studentsin mechanical engineering, especially in mechanical design, numerical simulation andengineering optimization.

Book Numerical Simulation in Hydraulic Fracturing  Multiphysics Theory and Applications

Download or read book Numerical Simulation in Hydraulic Fracturing Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Book Mathematical Models and Numerical Simulation in Electromagnetism

Download or read book Mathematical Models and Numerical Simulation in Electromagnetism written by Alfredo Bermúdez de Castro and published by Springer. This book was released on 2014-07-22 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

Book Advanced Methods for Geometric Modeling and Numerical Simulation

Download or read book Advanced Methods for Geometric Modeling and Numerical Simulation written by Carlotta Giannelli and published by Springer Nature. This book was released on 2019-09-18 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected contributions presented at the INdAM Workshop “DREAMS”, held in Rome, Italy on January 22−26, 2018. Addressing cutting-edge research topics and advances in computer aided geometric design and isogeometric analysis, it covers distinguishing curve/surface constructions and spline models, with a special focus on emerging adaptive spline constructions, fundamental spline theory and related algorithms, as well as various aspects of isogeometric methods, e.g. efficient quadrature rules and spectral analysis for isogeometric B-spline discretizations. Applications in finite element and boundary element methods are also discussed. Given its scope, the book will be of interest to both researchers and graduate students working in these areas.

Book Fluid Dynamics

    Book Details:
  • Author : Constantine Pozrikidis
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1475733232
  • Pages : 686 pages

Download or read book Fluid Dynamics written by Constantine Pozrikidis and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ready access to computers at an institutional and personal level has defined a new era in teaching and learning. The opportunity to extend the subject matter of traditional science and engineering disciplines into the realm of scientific computing has become not only desirable, but also necessary. Thanks to port ability and low overhead and operating costs, experimentation by numerical simulation has become a viable substitute, and occasionally the only alternative, to physical experiment at ion. The new environment has motivated the writing of texts and mono graphs with a modern perspective that incorporates numerical and com puter programming aspects as an integral part of the curriculum: meth ods, concepts, and ideas should be presented in a unified fashion that motivates and underlines the urgency of the new elements, but does not compromise the rigor of the classical approach and does not oversimplify. Interfacing fundamental concepts and practical methods of scientific computing can be done on different levels. In one approach, theory and implement at ion are kept complementary and presented in a sequential fashion. In a second approach, the coupling involves deriving compu tational methods and simulation algorithms, and translating equations into computer code instructions immediately following problem formu lations. The author of this book is a proponent of the second approach and advocates its adoption as a means of enhancing learning: interject ing methods of scientific computing into the traditional discourse offers a powerful venue for developing analytical skills and obtaining physical insight.

Book Numerical Analysis

Download or read book Numerical Analysis written by Brian Sutton and published by SIAM. This book was released on 2019-04-18 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook develops the fundamental skills of numerical analysis: designing numerical methods, implementing them in computer code, and analyzing their accuracy and efficiency. A number of mathematical problems?interpolation, integration, linear systems, zero finding, and differential equations?are considered, and some of the most important methods for their solution are demonstrated and analyzed. Notable features of this book include the development of Chebyshev methods alongside more classical ones; a dual emphasis on theory and experimentation; the use of linear algebra to solve problems from analysis, which enables students to gain a greater appreciation for both subjects; and many examples and exercises. Numerical Analysis: Theory and Experiments is designed to be the primary text for a junior- or senior-level undergraduate course in numerical analysis for mathematics majors. Scientists and engineers interested in numerical methods, particularly those seeking an accessible introduction to Chebyshev methods, will also be interested in this book.

Book Numerical Simulation of Optical Wave Propagation with Examples in MATLAB

Download or read book Numerical Simulation of Optical Wave Propagation with Examples in MATLAB written by Jason Daniel Schmidt and published by Society of Photo Optical. This book was released on 2010 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Simulation of Optical Wave Propagation is solely dedicated to wave-optics simulations. The book discusses digital Fourier transforms (FT), FT-based operations, multiple methods of wave-optics simulations, sampling requirements, and simulations in atmospheric turbulence.

Book Numerical Simulation in Fluid Dynamics

Download or read book Numerical Simulation in Fluid Dynamics written by Michael Griebel and published by SIAM. This book was released on 1998-01-01 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as an expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model; the discretization of the model equations; the development of algorithms; parallelization; and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids - the Navier-Stokes equations - the authors look at the simulation of free surface flows; energy and chemical transport; and turbulence. Readers are enabled to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 92 black-and-white and 18 color illustrations. After reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and apply their new knowledge to other scientific fields.

Book Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes

Download or read book Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes written by Miguel Cerrolaza and published by Academic Press. This book was released on 2017-12-28 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. - Provides non-conventional analysis methods for modeling - Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) - Includes contributions from several world renowned experts in their fields - Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems

Book Multi scale Phenomena in Complex Fluids

Download or read book Multi scale Phenomena in Complex Fluids written by Thomas Y. Hou and published by World Scientific. This book was released on 2009 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-Scale Phenomena in Complex Fluids is a collection of lecture notes delivered during the ªrst two series of mini-courses from "Shanghai Summer School on Analysis and Numerics in Modern Sciences," which was held in 2004 and 2006 at Fudan University, Shanghai, China. This review volume of 5 chapters, covering various fields in complex fluids, places emphasis on multi-scale modeling, analyses and simulations. It will be of special interest to researchers and graduate students who want to work in the field of complex fluids.

Book Partial Differential Equations  Modeling  Analysis and Numerical Approximation

Download or read book Partial Differential Equations Modeling Analysis and Numerical Approximation written by Hervé Le Dret and published by Birkhäuser. This book was released on 2016-02-11 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.

Book Numerical Simulation of Reactive Flow

Download or read book Numerical Simulation of Reactive Flow written by Elaine S. Oran and published by Cambridge University Press. This book was released on 2001 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reactive flows encompass a broad range of physical phenomena, interacting over many different time and space scales. Such flows occur in combustion, chemical lasers, the earth's oceans and atmosphere, and stars and interstellar space. Despite the obvious physical differences in these flows, there is a striking similarity in the forms of their descriptive equations. Thus, the considerations and procedures for constructing numerical models of these systems are also similar, and these similarities can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This book takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive flow problems that have occurred since the first edition of Numerical Simulation of Reactive Flow was published in 1987. It presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows.

Book Emerging Technologies for Health and Medicine

Download or read book Emerging Technologies for Health and Medicine written by Dac-Nhuong Le and published by John Wiley & Sons. This book was released on 2018-10-02 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Showcases the latest trends in new virtual/augmented reality healthcare and medical applications and provides an overview of the economic, psychological, educational and organizational impacts of these new applications and how we work, teach, learn and provide care. With the current advances in technology innovation, the field of medicine and healthcare is rapidly expanding and, as a result, many different areas of human health diagnostics, treatment and care are emerging. Wireless technology is getting faster and 5G mobile technology allows the Internet of Medical Things (IoMT) to greatly improve patient care and more effectively prevent illness from developing. This book provides an overview and review of the current and anticipated changes in medicine and healthcare due to new technologies and faster communication between users and devices. The groundbreaking book presents state-of-the-art chapters on many subjects including: A review of the implications of Virtual Reality (VR) and Augmented Reality (AR) healthcare applications A review of current augmenting dental care An overview of typical human-computer interaction (HCI) that can help inform the development of user interface designs and novel ways to evaluate human behavior to responses in VR and other new technologies A review of telemedicine technologies Building empathy in young children using augmented reality AI technologies for mobile health of stroke monitoring & rehabilitation robotics control Mobile doctor brain AI App An artificial intelligence mobile cloud computing tool Development of a robotic teaching aid for disabled children Training system design of lower limb rehabilitation robot based on virtual reality

Book Mathematical Modeling and Numerical Simulation in Continuum Mechanics

Download or read book Mathematical Modeling and Numerical Simulation in Continuum Mechanics written by Ivo Babuska and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first international symposium on mathematical foundations of the finite element method was held at the University of Maryland in 1973. During the last three decades there has been great progress in the theory and practice of solving partial differential equations, and research has extended in various directions. Full-scale nonlinear problems have come within the range of nu merical simulation. The importance of mathematical modeling and analysis in science and engineering is steadily increasing. In addition, new possibili ties of analysing the reliability of computations have appeared. Many other developments have occurred: these are only the most noteworthy. This book is the record of the proceedings of the International Sympo sium on Mathematical Modeling and Numerical Simulation in Continuum Mechanics, held in Yamaguchi, Japan from 29 September to 3 October 2000. The topics covered by the symposium ranged from solids to fluids, and in cluded both mathematical and computational analysis of phenomena and algorithms. Twenty-one invited talks were delivered at the symposium. This volume includes almost all of them, and expresses aspects of the progress mentioned above. All the papers were individually refereed. We hope that this volume will be a stepping-stone for further developments in this field.

Book Understanding Molecular Simulation

Download or read book Understanding Molecular Simulation written by Daan Frenkel and published by Elsevier. This book was released on 2001-10-19 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Book Advanced Approaches in Turbulence

Download or read book Advanced Approaches in Turbulence written by Paul Durbin and published by Elsevier. This book was released on 2021-07-24 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis

Book Numerical Simulation in Molecular Dynamics

Download or read book Numerical Simulation in Molecular Dynamics written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2007-08-16 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.