EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Simulation of Nonpremixed Turbulent Flow in a Dump Combustor

Download or read book Numerical Simulation of Nonpremixed Turbulent Flow in a Dump Combustor written by D. Lentini and published by . This book was released on 1990 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Simulation of Turbulent Combustion

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Book Numerical Simulation of Non premixed Turbulent Combustion

Download or read book Numerical Simulation of Non premixed Turbulent Combustion written by Stephen M. De Bruyn Kops and published by . This book was released on 1999 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Combustion Modeling

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays

Download or read book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays written by Bart Merci and published by Springer Science & Business Media. This book was released on 2014-03-27 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.

Book Proceedings of International Conference on Thermofluids

Download or read book Proceedings of International Conference on Thermofluids written by Shripad Revankar and published by Springer Nature. This book was released on 2020-11-21 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected and peer-reviewed proceedings of the International Conference on Thermofluids (KIIT Thermo 2020). It focuses on the latest studies and findings in the areas of fluid dynamics, heat transfer, thermodynamics, and combustion. Some of the topics covered in the book include electronic cooling, HVAC system analysis, inverse heat transfer, combustion, nano-fluids, multiphase flow, high-speed flow, and shock waves. The book includes both experimental and numerical studies along with a few review chapters from experienced researchers, and is expected to lead to new research in this important area. This book is of interest to students, researchers as well as practitioners working in the areas of fluid dynamics, thermodynamics, and combustion.

Book Problem Independent Numerical Simulation of Two Phase Flow in Combustors

Download or read book Problem Independent Numerical Simulation of Two Phase Flow in Combustors written by W. H. Ayers and published by . This book was released on 1984 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applying 3-D computer codes to isothermal and combusting two-phase flows is a multi-faceted processes. In the combustion case, this can involve the refinement of models for fuel droplet trajectories, droplet evaporation and radiation heat transfer. Turbulence modelling is also of basic importance. The realisation that many combustion flows do not satisfy the conditions of isotropy demanded by conventional models has stimulated more fundamental approaches to the Reynolds stress description. Since the common objective of such applications is to provide a basis for design, there is need for codes which are versatile, easy to operate, and interactive. This study reports some current progress in these areas. Aspects of the present code are presented including the coupling of flow and droplet motions and the interactive setting up procedure to define an arbitrary geometry. Calculated and measured velocity fields are shown for the isothermal flow in a coaxial dump combustor and results are presented for the combustion case using a baffle stabiliser.

Book A Framework for Turbulent Non premixed Combustion Modeling in OpenFoam

Download or read book A Framework for Turbulent Non premixed Combustion Modeling in OpenFoam written by Vasu Jaganath and published by . This book was released on 2020 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion remains a critical technology for electricity generation, heating, transportation and other industrial processes. Turbulent combustion lies at the heart of many of these processes. The accurate, robust and efficient computational modeling of turbulent combustion is necessary to design clean, efficient and safe combustion devices and processes. For practical combustion problems the direct numerical simulation (DNS) of the governing equations is computationally intractable. The Reynolds averaged Navier-Stokes simulation (RANS) and large eddy simulation (LES) techniques have emerged as powerful tools to simulate turbulent reacting flows. RANS and LES methodologies require closure of the unclosed terms arising from the averaging or filtering the governing equations. Even with adequate closure, RANS and LES remain computationally infeasible for simulating many combustion processes in engineering applications, further simplifications regarding flame thickness, flow and chemical reaction time scales are required. The high Damk\"{o}hler (Da) number flames can be modeled using a reduced chemistry model. A flamelet derived reduced chemistry model like Flamelet Generated Manifolds (FGM) accounts for finite rate chemistry while it greatly simplifies the simulation of turbulent combustion as it decouples the turbulent transport and flame structure. The interaction between the turbulence and the flame front in non-premixed combustion is described by the probability density function (PDF) of the composition variables. In this work, a framework for turbulent combustion modeling is presented for both RANS and, LES with FGM reduced chemistry model. This framework consists of implementation of presumed and transported PDF models and is developed within the open source CFD software OpenFOAM. The simulation of the well-known piloted methane-air jet flames (Sandia flames) is conducted in RANS context with both presumed and transported PDF models. An "A priori" analysis is conducted based on the RANS/TPDF simulation data. The analysis quantifies the extent of errors in PPDF models, specifically errors in choice of presumed PDF, statistical independence and the number moments and cross moments considered. A new PPDF model based on the Gaussian copula approach for correlation of the composition variables is developed and analyzed. The implementation of RANS/TPDF solver incorporates robust algorithms for particle tracking, position and number control. The LES/TFDF simulation of Sandia flame D is conducted to showcase the capability of the developed framework.

Book A Reacting Jet Direct Numerical Simulation for Assessing Combustion Model Error

Download or read book A Reacting Jet Direct Numerical Simulation for Assessing Combustion Model Error written by Bryan William Reuter and published by . This book was released on 2021 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of turbulent combustion systems is a vital tool in the design and development of new technologies for power generation, transportation, defense applications, and industrial heating. In an engineering design cycle, modeling realistic device configurations in a cost- and time-effective manner is required. Due to their flexibility and computational tractability, Reynolds-Averaged Navier-Stokes (RANS)-based models are most commonly used for these purposes. However, these models are known to be inadequate. Turbulent combustion is the coupling of two multiscale, nonlinear phenomena which individually have many modeling challenges. Hence, it is unsurprising that the modeling ansatzes and simplifying assumptions which lead to these practical RANS-based models are suspect. Since RANS-based models will continue to be the dominant tool for turbulent combustion simulation, it is necessary to improve their predictivity through a better understanding of their deficiencies. The are three main modeling issues for turbulent combustion: modeling the turbulent flow, representing the chemical reactions, and capturing the interaction between the turbulence and the chemistry. Model errors can easily be conflated when attempting to quantify deficiencies in this multiphysics context where many individual models are coupled. This work introduces a new technique for isolating these errors through the creation of a flamelet-based direct numerical simulation (DNS) of a nonpremixed, temporally-evolving, planar, reacting jet. DNS is a technique which resolves all lengthscales and timescales of the turbulent flow, providing high-quality data for model development but at a significant computational cost. In the turbulent combustion context, the turbulence-chemistry interaction is also fully resolved. By closing the DNS with a steady laminar flamelet representation, a typical chemical reactions model for RANS-based simulations, RANS turbulence closures and turbulence-chemistry interaction models can be evaluated in isolation through a priori testing. Conversely, by comparing the flamelet DNS to a second DNS employing a higher-fidelity chemistry model, the flamelet closure and its impact on the flame's evolution can be interrogated directly. To obtain the DNS data, a novel algorithm for solving the variable-density, low-Mach Navier-Stokes equations extending the method of Kim, Moin, and Moser for incompressible flow is detailed here. It is a pseudospectral Fourier/B-spline collocation approach which obtains second order accuracy in time and numerical stability for large density ratios with an efficient, matrix-free, iterative treatment of the scalar equations. The a posteriori comparisons of the flamelet DNS and the complex chemistry DNS suggest the flamelet model can significantly alter the evolution of the mean state of the reacting jet; however, violations of global conservation were identified in the complex chemistry DNS. Therefore, no strong conclusions can be made about the chemical reactions model from the comparisons. Significant shortcomings have been identified in the a priori evaluations of the aforementioned RANS closures for turbulent transport, scalar mixing, and turbulence-chemistry interaction, where the flamelet model is taken to be exact. Finally, a flawed assumption in the steady laminar flamelet approach has been directly linked to nonphysical behavior of the density for small values of the scalar dissipation rate

Book 91 3460   92 3499

Download or read book 91 3460 92 3499 written by and published by . This book was released on 1992 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Modeling of Turbulent Combustion in Premixed Gases

Download or read book Numerical Modeling of Turbulent Combustion in Premixed Gases written by Ahmed Fouad Zakaria Ghoniem and published by . This book was released on 1980 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Non premixed Combustion  Full Numerical Simulation of a Coflowing Axisymmetric Jet  Inviscid and Viscous Stability Analysis

Download or read book Non premixed Combustion Full Numerical Simulation of a Coflowing Axisymmetric Jet Inviscid and Viscous Stability Analysis written by Stanford University. Thermosciences Division. Thermosciences Division and published by . This book was released on 1989 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulations of Turbulent Combustion

Download or read book Numerical Simulations of Turbulent Combustion written by Andrei Lipatnikov and published by Mdpi AG. This book was released on 2020-07 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent burning of gaseous fuels is widely used for energy conversion in stationary power generation, e.g., gas turbines, land transportation, piston engines, and aviation, and aero-engine afterburners. Nevertheless, our fundamental understanding of turbulent combustion is still limited, because it is a highly non-linear and multiscale process that involves various local phenomena and thousands (e.g., for gasoline-air mixtures) of chemical reactions between hundreds of species, including several reactions that control emissions from flames. Therefore, there is a strong need for elaborating high fidelity, advanced numerical models, and methods that will catch the governing physical mechanisms of flame-turbulence interaction and, consequently, will make turbulent combustion computations an efficient predictive tool for applied research and, in particular, for development of a new generation of ultra-clean and highly efficient internal combustion engines that will allow society to properly respond to current environmental and efficiency challenges. Accordingly, papers published in this Special Issue (i) contribute to our fundamental understanding of flame-turbulence interaction by analyzing results of unsteady multi-dimensional numerical simulations and (ii) develop and validate high-fidelity models and efficient numerical methods for computational fluid Dynamics research into turbulent combustion in laboratory burners and engines.

Book Direct Numerical Simulations of Turbulent Flow and Spray Combustion

Download or read book Direct Numerical Simulations of Turbulent Flow and Spray Combustion written by Abouelmagd Abdelsamie and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Direct Numerical Simulation of Premixed Turbulent Combustion

Download or read book Direct Numerical Simulation of Premixed Turbulent Combustion written by Theodoor Cornelis Treurniet and published by . This book was released on 2002 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book NASA SP

    Book Details:
  • Author :
  • Publisher :
  • Release : 1992
  • ISBN :
  • Pages : 654 pages

Download or read book NASA SP written by and published by . This book was released on 1992 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: