EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Simulation of Electrolyte supported Planar Button Solid Oxide Fuel Cell

Download or read book Numerical Simulation of Electrolyte supported Planar Button Solid Oxide Fuel Cell written by Amjad Aman and published by . This book was released on 2012 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid Oxide Fuel Cells are fuel cells that operate at high temperatures usually in the range of 600°C to 1000°C and employ solid ceramics as the electrolyte. In Solid Oxide Fuel Cells oxygen ions (O2−) are the ionic charge carriers. Solid Oxide Fuel Cells are known for their higher electrical efficiency of about 50-60% (1) compared to other types of fuel cells and are considered very suitable in stationary power generation applications. It is very important to study the effects of different parameters on the performance of Solid Oxide Fuel Cells and for this purpose the experimental or numerical simulation method can be adopted as the research method of choice. Numerical simulation involves constructing a mathematical model of the Solid Oxide Fuel Cell and use of specifically designed software programs that allows the user to manipulate the model to evaluate the system performance under various configurations and in real time. A model is only usable when it is validated with experimental results. Once it is validated, numerical simulation can give accurate, consistent and efficient results. Modeling allows testing and development of new materials, fuels, geometries, operating conditions without disrupting the existing system configuration. In addition, it is possible to measure internal variables which are experimentally difficult or impossible to measure and study the effects of different operating parameters on power generated, efficiency, current density, maximum temperatures reached, stresses caused by temperature gradients and effects of thermal expansion for electrolytes, electrodes and interconnects. Since Solid Oxide Fuel Cell simulation involves a large number of parameters and complicated equations, mostly Partial Differential Equations, the situation calls for a sophisticated simulation technique and hence a Finite Element Method (FEM) multiphysics approach will be employed. This can provide three-dimensional localized information inside the fuel cell. For this thesis, COMSOL Multiphysics® version 4.2a will be used for simulation purposes because it has a Batteries & Fuel Cells module, the ability to incorporate custom Partial Differential Equations and the ability to integrate with and utilize the capabilities of other tools like MATLAB®, Pro/Engineer®, SolidWorks®. Fuel Cells can be modeled at the system or stack or cell or the electrode level. This thesis will study Solid Oxide Fuel Cell modeling at the cell level. Once the model can be validated against experimental data for the cell level, then modeling at higher levels can be accomplished in the future. Here the research focus is on Solid Oxide Fuel Cells that use hydrogen as the fuel. The study focuses on solid oxide fuel cells that use 3-layered, 4-layered and 6-layered electrolytes using pure YSZ or pure SCSZ or a combination of layers of YSZ and SCSZ. A major part of this research will be to compare SOFC performance of the different configurations of these electrolytes. The cathode and anode material used are (La0.6Sr0.4)0.95-0.99Co0.2Fe0.O3 and Ni-YSZ respectively.

Book Reduced Modelling of Planar Fuel Cells

Download or read book Reduced Modelling of Planar Fuel Cells written by Zhongjie He and published by Springer. This book was released on 2016-12-25 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on novel reduced cell and stack models for proton exchange membrane fuel cells (PEMFCs) and planar solid oxide fuel cells (P-SOFCs) that serve to reduce the computational cost by two orders of magnitude or more with desired numerical accuracy, while capturing both the average properties and the variability of the dependent variables in the 3D counterparts. The information provided can also be applied to other kinds of plate-type fuel cells whose flow fields consist of parallel plain channels separated by solid ribs. These fast and efficient models allow statistical sensitivity analysis for a sample size in the order of 1000 without prohibitive computational cost to be performed to investigate not only the individual, but also the simultaneous effects of a group of varying geometrical, material, and operational parameters. This provides important information for cell/stack design, and to illustrate this, Monte Carlo simulation of the reduced P-SOFC model is conducted at both the single-cell and stack levels.

Book High Temperature Solid Oxide Fuel Cells for the 21st Century

Download or read book High Temperature Solid Oxide Fuel Cells for the 21st Century written by Kevin Kendall and published by Elsevier. This book was released on 2015-11-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-temperature Solid Oxide Fuel Cells, Second Edition, explores the growing interest in fuel cells as a sustainable source of energy. The text brings the topic of green energy front and center, illustrating the need for new books that provide comprehensive and practical information on specific types of fuel cells and their applications. This landmark volume on solid oxide fuel cells contains contributions from experts of international repute, and provides a single source of the latest knowledge on this topic. - A single source for all the latest information on solid oxide fuel cells and their applications - Illustrates the need for new, more comprehensive books and study on the topic - Explores the growing interest in fuel cells as viable, sustainable sources of energy

Book Performance Simulation of Planar Solid Oxide Fuel Cells

Download or read book Performance Simulation of Planar Solid Oxide Fuel Cells written by Siamak Farhad and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The performance of solid oxide fuel cells (SOFCs) at the cell and system levels is studied using computer simulation. At the cell level, a new model combining the cell micro and macro models is developed. Using this model, the microstructural variables of porous composite electrodes can be linked to the cell performance. In this approach, the electrochemical performance of porous composite electrodes is predicted using a micro-model. In the micro-model, the random-packing sphere method is used to estimate the microstructural properties of porous composite electrodes from the independent microstructural variables. These variables are the electrode porosity, thickness, particle size ratio, and size and volume fraction of electron-conducting particles. Then, the complex interdependency among the multi-component mass transport, electron and ion transports, and the electrochemical and chemical reactions in the microstructure of electrodes is taken into account to predict the electrochemical performance of electrodes. The temperature distribution in the solid structure of the cell and the temperature and species partial pressure distributions in the bulk fuel and air streams are predicted using the cell macro-model. In the macro-model, the energy transport is considered for the cell solid structure and the mass and energy transports are considered for the fuel and air streams. To demonstrate the application of the cell level model developed, entitled the combined micro- and micro-model, several anode-supported co-flow planar cells with a range of microstructures of porous composite electrodes are simulated. The mean total polarization resistance, the mean total power density, and the temperature distribution in the cells are predicted. The results of this study reveal that there is an optimum value for most of the microstructural variables of the electrodes at which the mean total polarization resistance of the cell is minimized. There is also an optimum value for most of the microstructural variables of the electrodes at which the mean total power density of the cell is maximized. The microstructure of porous composite electrodes also plays a significant role in the mean temperature, the temperature difference between the hottest and coldest spots, and the maximum temperature gradient in the solid structure of the cell. Overall, using the combined micro- and micro-model, an appropriate microstructure for porous composite electrodes to enhance the cell performance can be designed. At the system level, the full load operation of two SOFC systems is studied. To model these systems, the basic cell model is used for SOFCs at the cell level, the repeated-cell stack model is used for SOFCs at the stack level, and the thermodynamic model is used for the balance of plant components of the system. In addition to these models, a carbon deposition model based on the thermodynamic equilibrium assumption is employed. For the system level model, the first SOFC system considered is a combined heat and power (CHP) system that operates with biogas fuel. The performance of this system at three different configurations is evaluated. These configurations are different in the fuel processing method to prevent carbon deposition on the anode catalyst. The fuel processing methods considered in these configurations are the anode gas recirculation (AGR), steam reforming (SR), and partial oxidation reformer (POX) methods. The application of this system is studied for operation in a wastewater treatment plant (WWTP) and in single-family detached dwellings. The evaluation of this system for operation in a WWTP indicates that if the entire biogas produced in the WWTP is used in the system with AGR or SR fuel processors, the electric power and heat required to operate the plant can be completely supplied and the extra electric power generated can be sold to the electrical grid. The evaluation of this system for operation in single-family detached dwellings indicates that, depending on the size, location, and building type and design, this system with all configurations studied is suitable to provide the domestic hot water and electric power demands. The second SOFC system is a novel portable electric power generation system that operates with liquid ammonia fuel. Size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. Using a sensitivity analysis, the effects of the cell voltage at several fuel utilization ratios on the number of cells required for the SOFC stack, system efficiency and voltage, and excess air required for thermal management of the SOFC stack are studied.

Book Mechanical Characterization and Modeling of Solid Oxide Fuel Cell Electrolytes with Honeycomb Support

Download or read book Mechanical Characterization and Modeling of Solid Oxide Fuel Cell Electrolytes with Honeycomb Support written by Ryan B. Berke and published by . This book was released on 2013 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Planar solid oxide fuel cells (SOFCs) are made up of repeating sequences of electrolytes, electrodes, seals, interconnects, and current collectors. For electro-chemical reasons it is best to keep the electrolyte as thin as possible. However, for electrolyte-supported cells, the thin electrolytes are susceptible to damage during production, assembly, and operation. To produce cells with sufficient mechanical robustness, electrolytes can be made with a co-sintered honeycomb structure that supports the thin, electro-chemically efficient electrolyte membranes.

Book Science and Technology of Ceramic Fuel Cells

Download or read book Science and Technology of Ceramic Fuel Cells written by N.Q. Minh and published by Elsevier. This book was released on 1995-08-15 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic fuel cells, commonly known as solid oxide fuel cells (SOFCs), have been under development for a broad range of electric power generation applications. The most attractive feature of the SOFC is its clean and efficient production of electricity from a variety of fuels. The SOFC has the potential to be manufactured and operated cost-effectively. The widening interest in this technology, thus, arises from the continuing need to develop cleaner and more efficient means of converting energy sources into useful forms. This topical book provides a comprehensive treatise on solid oxide fuel cells and succeeds successfully in filling the gap in the market for a reference book in this field. Directed towards scientists, engineers, and technical managers working with SOFCs as well as ceramic devices based on conducting materials, and in related fields, the book will also be invaluable as a textbook for science and engineering courses.

Book Modeling Solid Oxide Fuel Cells

Download or read book Modeling Solid Oxide Fuel Cells written by Roberto Bove and published by Springer Science & Business Media. This book was released on 2008-04-20 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills the need for a practical reference for all scientists and graduate students who are seeking to define a mathematical model for Solid Oxide Fuel Cell (SOFC) simulation. Structured in two parts, part one presents the basic theory, and the general equations describing SOFC operation phenomena. Part two deals with the application of the theory to practical examples, where different SOFC geometries, configurations, and different phenomena are analyzed in detail.

Book Gas Transport in Solid Oxide Fuel Cells

Download or read book Gas Transport in Solid Oxide Fuel Cells written by Weidong He and published by Springer. This book was released on 2014-09-03 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

Book Solid Oxide Fuel Cells

Download or read book Solid Oxide Fuel Cells written by Bin Zhu and published by John Wiley & Sons. This book was released on 2020-06-02 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents innovative approaches towards affordable, highly efficient, and reliable sustainable energy systems Written by leading experts on the subject, this book provides not only a basic introduction and understanding of conventional fuel cell principle, but also an updated view of the most recent developments in this field. It focuses on the new energy conversion technologies based on both electrolyte and electrolyte-free fuel cells?from advanced novel ceria-based composite electrolyte low temperature solid oxide fuel cells to non-electrolyte fuel cells as advanced fuel-to-electricity conversion technology. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices is divided into three parts. Part I covers the latest developments of anode, electrolyte, and cathode materials as well as the SOFC technologies. Part II discusses the non-electrolyte or semiconductor-based membrane fuel cells. Part III focuses on engineering efforts on materials, technology, devices and stack developments, and looks at various applications and new opportunities of SOFC using both the electrolyte and non-electrolyte principles, including integrated fuel cell systems with electrolysis, solar energy, and more. -Offers knowledge on how to realize highly efficient fuel cells with novel device structures -Shows the opportunity to transform the future fuel cell markets and the possibility to commercialize fuel cells in an extended range of applications -Presents a unique collection of contributions on the development of solid oxide fuel cells from electrolyte based to non-electrolyte-based technology -Provides a more comprehensive understanding of the advances in fuel cells and bridges the knowledge from traditional SOFC to the new concept -Allows readers to track the development from the conventional SOFC to the non-electrolyte or single-component fuel cell Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices will serve as an important reference work to students, scientists, engineers, researchers, and technology developers in the fuel cell field.

Book Modeling of Anode supported Planar Solid Oxide Fuel Cells

Download or read book Modeling of Anode supported Planar Solid Oxide Fuel Cells written by Shuping Wang and published by . This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Methods of Solid Oxide Fuel Cell Modeling

Download or read book Advanced Methods of Solid Oxide Fuel Cell Modeling written by Jarosław Milewski and published by Springer Science & Business Media. This book was released on 2011-03-04 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. Advanced Methods of Solid Oxide Fuel Cell Modeling proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. Advanced Methods of Solid Oxide Fuel Cell Modeling provides a comprehensive description of modern fuel cell theory and a guide to the mathematical modeling of SOFCs, with particular emphasis on the use of ANNs. Up to now, most of the equations involved in SOFC models have required the addition of numerous factors that are difficult to determine. The artificial neural network (ANN) can be applied to simulate an object’s behavior without an algorithmic solution, merely by utilizing available experimental data. The ANN methodology discussed in Advanced Methods of Solid Oxide Fuel Cell Modeling can be used by both researchers and professionals to optimize SOFC design. Readers will have access to detailed material on universal fuel cell modeling and design process optimization, and will also be able to discover comprehensive information on fuel cells and artificial intelligence theory.

Book Intermediate Temperature Solid Oxide Fuel Cells

Download or read book Intermediate Temperature Solid Oxide Fuel Cells written by Gurbinder Kaur and published by Elsevier. This book was released on 2019-11-21 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intermediate Temperature Solid Oxide Fuel Cells: Electrolytes, Electrodes and Interconnects introduces the fundamental principles of intermediate solid oxide fuel cells technology. It provides the reader with a broad understanding and practical knowledge of the electrodes, pyrochlore/perovskite/oxide electrolytes and interconnects which form the backbone of the Solid Oxide Fuel Cell (SOFC) unit. Opening with an introduction to the thermodynamics, physiochemical and electrochemical behavior of Solid Oxide Fuel Cells (SOFC), the book also discusses specific materials, including low temperature brownmillerites and aurivillius electrolytes, as well as pyrochlore interconnects. This book analyzes the basic concepts, providing cutting-edge information for both researchers and students. It is a complete reference for Intermediate Solid Oxide Fuel Cells technology that will be a vital resource for those working in materials science, fuel cells and solid state chemistry. - Provides a single source of information on glass, electrolytes, interconnects, vanadates, pyrochlores and perovskite SOFC - Includes illustrations that provide a clear visual explanation of concepts being discussed - Progresses from a discussion of basic concepts that will enable readers to easily comprehend the subject matter

Book Numerical Prediction of the Performance of Integrated Planar Solid Oxide Fuel Cells  with Comparisons of Results from Several Codes

Download or read book Numerical Prediction of the Performance of Integrated Planar Solid Oxide Fuel Cells with Comparisons of Results from Several Codes written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A numerical study of the thermal and electrochemical performance of a single-tube Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) has been performed. Results obtained from two finite-volume computational fluid dynamics (CFD) codes FLUENT and SOHAB and from a two-dimensional inhouse developed finite-volume GENOA model are presented and compared. Each tool uses physical and geometric models of differing complexity and comparisons are made to assess their relative merits. Several single-tube simulations were run using each code over a range of operating conditions. The results include polarization curves, distributions of local current density, composition and temperature. Comparisons of these results are discussed, along with their relationship to the respective imbedded phenomenological models for activation losses, fluid flow and mass transport in porous media. In general, agreement between the codes was within 15% for overall parameters such as operating voltage and maximum temperature. The CFD results clearly show the effects of internal structure on the distributions of gas flows and related quantities within the electrochemical cells.

Book Three dimensional Simulation of an Integrated planar Solid Oxide Fuel Cell

Download or read book Three dimensional Simulation of an Integrated planar Solid Oxide Fuel Cell written by Ben Adam Haberman and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solid Oxide Fuel Cells

    Book Details:
  • Author : Meng Ni
  • Publisher : Royal Society of Chemistry
  • Release : 2013-08-16
  • ISBN : 1849737770
  • Pages : 539 pages

Download or read book Solid Oxide Fuel Cells written by Meng Ni and published by Royal Society of Chemistry. This book was released on 2013-08-16 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming of hydrocarbon fuels and ammonia thermal cracking can be realized in SOFC anode. This book presents an overview of the SOFC technology with a focus on the recent developments in new technologies and new ideas for addressing the key issues of SOFC development. This book first introduces the fundamental principles of SOFCs and compares SOFC technology with conventional heat engines as well as low temperature fuel cells. Then the latest developments in SOFC R&D are reviewed and future directions are discussed. Key issues related to SOFC performance improvement, long-term stability, mathematical modelling, as well as system integration/control are addressed, including material development, infiltration technique for nano-structured electrode fabrication, focused ion beam – scanning electron microscopy (FIB-SEM) technique for microstructure reconstruction, the Lattice Boltzmann Method (LBM) simulation at pore scale, multi-scale modelling, SOFC integration with buildings and other cycles for stationary applications.

Book High temperature Solid Oxide Fuel Cells  Fundamentals  Design and Applications

Download or read book High temperature Solid Oxide Fuel Cells Fundamentals Design and Applications written by S.C. Singhal and published by Elsevier. This book was released on 2003-12-08 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications provides a comprehensive discussion of solid oxide fuel cells (SOFCs). SOFCs are the most efficient devices for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity, and have been gaining increasing attention for clean and efficient distributed power generation. The book explains the operating principle, cell component materials, cell and stack designs and fabrication processes, cell and stack performance, and applications of SOFCs. Individual chapters are written by internationally renowned authors in their respective fields, and the text is supplemented by a large number of references for further information. The book is primarily intended for use by researchers, engineers, and other technical people working in the field of SOFCs. Even though the technology is advancing at a very rapid pace, the information contained in most of the chapters is fundamental enough for the book to be useful even as a text for SOFC technology at the graduate level.

Book Solid Oxide Fuel Cells IX

Download or read book Solid Oxide Fuel Cells IX written by S. C. Singhal and published by The Electrochemical Society. This book was released on 2005 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: