EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Simulation in Molecular Dynamics

Download or read book Numerical Simulation in Molecular Dynamics written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2007-08-16 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.

Book Advanced Numerical Simulation Methods

Download or read book Advanced Numerical Simulation Methods written by Gernot Beer and published by CRC Press. This book was released on 2015-07-27 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This entertaining introduction to advanced numerical modeling aims to lead the reader on a journey towards theholy grail of numerical simulation, i.e. one without the requirement of mesh generation, that takes data directly from CAD programs. This hands-on book emphasizes implementation and examples of programming in a higher level language are given. Written for users of simulation software, so they can understand the benefits of this new technology and demand progress from a somewhat conservative industry. Written for software developers, so they can see that this is a technology with a big future and written for researchers, in the hope that it will attract more people to work in this field.

Book Numerical Simulation in Physics and Engineering

Download or read book Numerical Simulation in Physics and Engineering written by Inmaculada Higueras and published by Springer. This book was released on 2016-07-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents lecture notes from the XVI ‘Jacques-Louis Lions’ Spanish-French School on Numerical Simulation in Physics and Engineering, held in Pamplona (Navarra, Spain) in September 2014. The subjects covered include: numerical analysis of isogeometric methods, convolution quadrature for wave simulations, mathematical methods in image processing and computer vision, modeling and optimization techniques in food processes, bio-processes and bio-systems, and GPU computing for numerical simulation. The book is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques in the fields addressed here. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.

Book Numerical Simulation of Reactive Flow in Hot Aquifers

Download or read book Numerical Simulation of Reactive Flow in Hot Aquifers written by Christoph Clauser and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This product, consisting of a CD-ROM and a book, deals with the numerical simulation of reactive transport in porous media using the simulation package SHEMAT/Processing SHEMAT. SHEMAT (Simulator for HEat and MAss Transport) is an easy-to-use, general-purpose reactive transport simulation code for a wide variety of thermal and hydrogeological problems in two or three dimensions. The book is a richly documented manual for users of this software which discusses in detail the coded physical and chemical equations. Thus, it provides the in-depth background required by those who want to apply the code for solving advanced technical and scientific problems. The enclosed companion CD-ROM contains the software and data for all of the case studies. The software includes user-friendly pre- and post-processors which make it very easy to set up a model, run it and view the results, all from one platform. Therefore, the software is also very suitable for academic or technical "hands-on" courses for simulating flow, transport of heat and mass, and chemical reactions in porous media. You can find a link to the updated software on springer.com .

Book The Numerical Simulation of Fluid Flow

Download or read book The Numerical Simulation of Fluid Flow written by Robert Castilla and published by Mdpi AG. This book was released on 2022-02-17 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the accepted contributions to the Special Issue "The Numerical Simulation of Fluid Flow" in the Energies journal of MDPI. It is focused more on practical applications of numerical codes than in its development. It covers a wide variety of topics, from aeroacoustics to aerodynamics and flow-particles interaction.

Book Numerical Simulation and Modelling of Electronic and Biochemical Systems

Download or read book Numerical Simulation and Modelling of Electronic and Biochemical Systems written by Jaijeet Roychowdhury and published by Now Publishers Inc. This book was released on 2009 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation and modelling have been growing in importance and seeing steadily increasing practical application. The proliferation of applications and physical domains for which simulation technologies are now needed, compounded by generally increased complexity, has expanded the scope of numerical simulation and modelling within CAD and spurred new research directions. Numerical Simulation and Modelling of Electronic and Biochemical Systems provides an introduction to the fundamentals of numerical simulation, and to the basics of modelling electronic circuits and biochemical reactions. The emphasis is on capturing a minimal set of important concepts succinctly, but concretely enough that the reader will be left with an adequate foundation for further independent exploration. Starting from mathematical models of basic electronic elements, circuits are modelled as nonlinear differential-algebraic equation (DAE) systems. Two basic techniques - quiescent steady state and transient - for solving these differential equations systems are then developed. It is then shown how biochemical reactions can also be modelled deterministically as DAEs. Following this, frequency domain techniques for finding sinusoidal steady states of linear DAEs are developed, as are direct and adjoint techniques for computing parameter sensitivities and the effects of stationary random noise. For readers interested in a glimpse of topics beyond these basics, an introduction to nonlinear periodic steady state methods (harmonic balance and shooting) and the multitime partial differential equation formulation is provided. Also provided is an overview of model order reduction, an important topic of current research that has roots in numerical simulation algorithms. Finally, sample applications of nonlinear oscillator macromodels - in circuits (PLLs), biochemical reaction-diffusion systems and nanoelectronics - are presented.

Book Numerical Simulation of Optical Wave Propagation with Examples in MATLAB

Download or read book Numerical Simulation of Optical Wave Propagation with Examples in MATLAB written by Jason Daniel Schmidt and published by Society of Photo Optical. This book was released on 2010 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Simulation of Optical Wave Propagation is solely dedicated to wave-optics simulations. The book discusses digital Fourier transforms (FT), FT-based operations, multiple methods of wave-optics simulations, sampling requirements, and simulations in atmospheric turbulence.

Book Numerical Simulation in Fluid Dynamics

Download or read book Numerical Simulation in Fluid Dynamics written by Michael Griebel and published by SIAM. This book was released on 1998-01-01 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as an expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model; the discretization of the model equations; the development of algorithms; parallelization; and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids - the Navier-Stokes equations - the authors look at the simulation of free surface flows; energy and chemical transport; and turbulence. Readers are enabled to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 92 black-and-white and 18 color illustrations. After reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and apply their new knowledge to other scientific fields.

Book Numerical Simulation

    Book Details:
  • Author : Ricardo Lopez-Ruiz
  • Publisher : BoD – Books on Demand
  • Release : 2016-08-24
  • ISBN : 9535125648
  • Pages : 442 pages

Download or read book Numerical Simulation written by Ricardo Lopez-Ruiz and published by BoD – Books on Demand. This book was released on 2016-08-24 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays mathematical modeling and numerical simulations play an important role in life and natural science. Numerous researchers are working in developing different methods and techniques to help understand the behavior of very complex systems, from the brain activity with real importance in medicine to the turbulent flows with important applications in physics and engineering. This book presents an overview of some models, methods, and numerical computations that are useful for the applied research scientists and mathematicians, fluid tech engineers, and postgraduate students.

Book Mathematical Models and Numerical Simulation in Electromagnetism

Download or read book Mathematical Models and Numerical Simulation in Electromagnetism written by Alfredo Bermúdez de Castro and published by Springer. This book was released on 2014-07-22 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

Book Numerical Simulation of Mechatronic Sensors and Actuators

Download or read book Numerical Simulation of Mechatronic Sensors and Actuators written by Manfred Kaltenbacher and published by Springer. This book was released on 2015-02-07 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like the previous editions also the third edition of this book combines the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. Thereby, the basic chapter concerning the Finite Element (FE) method is enhanced, provides now also a description of higher order finite elements (both for nodal and edge finite elements) and a detailed discussion of non-conforming mesh techniques. The author enhances and improves many discussions on principles and methods. In particular, more emphasis is put on the description of single fields by adding the flow field. Corresponding to these field, the book is augmented with the new chapter about coupled flow-structural mechanical systems. Thereby, the discussion of computational aeroacoustics is extended towards perturbation approaches, which allows a decomposition of flow and acoustic quantities within the flow region. Last but not least, applications are updated and restructured so that the book meets modern demands.

Book Direct Numerical Simulations

Download or read book Direct Numerical Simulations written by Srinivasa Rao and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes

Download or read book Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes written by Miguel Cerrolaza and published by Academic Press. This book was released on 2017-12-28 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. - Provides non-conventional analysis methods for modeling - Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) - Includes contributions from several world renowned experts in their fields - Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems

Book Numerical Simulation of Reactive Flow

Download or read book Numerical Simulation of Reactive Flow written by Elaine S. Oran and published by Cambridge University Press. This book was released on 2001 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reactive flows encompass a broad range of physical phenomena, interacting over many different time and space scales. Such flows occur in combustion, chemical lasers, the earth's oceans and atmosphere, and stars and interstellar space. Despite the obvious physical differences in these flows, there is a striking similarity in the forms of their descriptive equations. Thus, the considerations and procedures for constructing numerical models of these systems are also similar, and these similarities can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This book takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive flow problems that have occurred since the first edition of Numerical Simulation of Reactive Flow was published in 1987. It presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows.

Book Numerical Simulation of Mechanical Behavior of Composite Materials

Download or read book Numerical Simulation of Mechanical Behavior of Composite Materials written by Sergio Oller and published by Springer. This book was released on 2014-09-04 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization) and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debonding, local buckling of fibers and its coupling with the overall buckling of the structure. Finally, several numerical examples that evaluates the qualities and capabilities of the general model formulated are offered in this book. This book is intended for graduate engineering students who want to expand their knowledge of composite structures behavior.

Book Numerical Simulation for Next Generation Thermal Power Plants

Download or read book Numerical Simulation for Next Generation Thermal Power Plants written by Falah Alobaid and published by Springer. This book was released on 2018-03-29 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides highly specialized researchers and practitioners with a major contribution to mathematical models’ developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.

Book Direct Numerical Simulations of Gas   Liquid Multiphase Flows

Download or read book Direct Numerical Simulations of Gas Liquid Multiphase Flows written by Grétar Tryggvason and published by Cambridge University Press. This book was released on 2011-03-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.