EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Modelling of Two dimensional Shallow water Flows

Download or read book Numerical Modelling of Two dimensional Shallow water Flows written by Sami A. Al-Sanea and published by . This book was released on 1981 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods for Shallow Water Flow

Download or read book Numerical Methods for Shallow Water Flow written by C.B. Vreugdenhil and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wide variety of problems are associated with the flow of shallow water, such as atmospheric flows, tides, storm surges, river and coastal flows, lake flows, tsunamis. Numerical simulation is an effective tool in solving them and a great variety of numerical methods are available. The first part of the book summarizes the basic physics of shallow-water flow needed to use numerical methods under various conditions. The second part gives an overview of possible numerical methods, together with their stability and accuracy properties as well as with an assessment of their performance under various conditions. This enables the reader to select a method for particular applications. Correct treatment of boundary conditions (often neglected) is emphasized. The major part of the book is about two-dimensional shallow-water equations but a discussion of the 3-D form is included. The book is intended for researchers and users of shallow-water models in oceanographic and meteorological institutes, hydraulic engineering and consulting. It also provides a major source of information for applied and numerical mathematicians.

Book Numerical modelling of 2 dimensional shallow water flows

Download or read book Numerical modelling of 2 dimensional shallow water flows written by S. A. A. Al-Sanea and published by . This book was released on 1982 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Shallow Water Hydrodynamics

Download or read book Shallow Water Hydrodynamics written by W.Y. Tan and published by Elsevier. This book was released on 1992-08-17 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within this monograph a comprehensive and systematic knowledge on shallow-water hydrodynamics is presented. A two-dimensional system of shallow-water equations is analyzed, including the mathematical and mechanical backgrounds, the properties of the system and its solution. Also featured is a new mathematical simulation of shallow-water flows by compressible plane flows of a special virtual perfect gas, as well as practical algorithms such as FDM, FEM, and FVM. Some of these algorithms have been utilized in solving the system, while others have been utilized in various applied fields. An emphasis has been placed on several classes of high-performance difference schemes and boundary procedures which have found wide uses recently for solving the Euler equations of gas dynamics in aeronautical and aerospatial engineering. This book is constructed so that it may serve as a handbook for practicians. It will be of interest to scientists, designers, teachers, postgraduates and professionals in hydraulic, marine, and environmental engineering; especially those involved in the mathematical modelling of shallow-water bodies.

Book Numerical Modelling of Shallow Water Flows Over Mobile Beds

Download or read book Numerical Modelling of Shallow Water Flows Over Mobile Beds written by Xin Liu and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This Ph.D. thesis aims to develop numerical models for two-dimensional and three-dimensional shallow water systems over mobile beds. In order to accomplish the goal of this dissertation, the following sub-projects are defined and completed. 1: The first sub-project consists in developing a robust two-dimensional coupled numerical model based on an unstructured mesh, which can simulate rapidly varying flows over an erodible bed involving wet-dry fronts that is a complex yet practically important problem. In this task, the central-upwind scheme is extended to simulation of bed erosion and sediment transport, a modified shallow water system is adopted to improve the model, a wetting and drying scheme is proposed for tracking wet-dry interfaces and stably predict the bed erosion near wet-dry area. The shallow water, sediment transport and bed evolution equations are coupled in the governing system. The proposed model can efficiently track wetting and drying interfaces while preserving stability in simulating the bed erosion near the wet-dry fronts. The additional terms in shallow water equations can improve the accuracy of the simulation when intense sediment-exchange exists; the central-upwind method adopted in the current study shows great accuracy and efficiency compared with other popular solvers; the developed model is robust, efficient and accurate in dealing with various challenging cases. 2: The second sub-project consists in developing a novel numerical scheme for a coupled two-dimensional hyperbolic system consisting of the shallow water equations with friction terms coupled with the equations modeling the sediment transport and bed evolution. The resulting 5*5 hyperbolic system of balance laws is numerically solved using a Godunov-type central-upwind scheme on a triangular grid. A spatially second-order and temporally third-order central-upwind scheme has been derived to discretize the conservative hyperbolic sub-system. However, such schemes need a correct evaluation of local wave speeds to avoid instabilities. To address such an issue, a mathematical result by the Lagrange theorem is used in the proposed scheme. Consequently, a computationally expensive process of finding all of the eigenvalues of the Jacobian matrices is avoided: The upper/lower bounds on the largest/smallest local speeds of propagation are estimated using the Lagrange theorem. In addition, a special discretization of the bed-slope term is proposed to guarantee the well-balanced property of the designed scheme. 3: The third sub-project consists in designing a novel scheme to estimate bed-load fluxes which can produce more accurate results than the previously reported coupled model. Using a pair of local wave speeds different from those used for the flow, a novel wave estimator in conjunction with the central upwind method is proposed and successfully applied to the coupled water-sediment system involving a rapid bed-erosion process. It was demonstrated that, in comparison with the decoupled model, applying the proposed novel scheme to approximate the bed-load fluxes can successfully avoid the numerical oscillations caused by simple and less stable schemes, e.g. simple upwind methods; in comparison with the coupled model using same flux-estimator for both hydrodynamic and morphological systems, the proposed numerical scheme successfully prevents excessive numerical diffusion for prediction of bed evolution. Consequently, the proposed scheme has advantages in terms of accuracy which are shown in several numerical tests. In addition, analytical expressions have been provided for calculating the eigenvalues of the coupled shallow-water-Exner system, which greatly enhances the efficiency of the proposed method. 4: The fourth sub-project consists in developing a three-dimensional numerical model for the simulation of unsteady non-hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics-based scheme which simulates sub- and super-critical flows. Three-dimensional velocity components are considered in a collocated arrangement with a sigma coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term. The unstructured grid in the horizontal direction and the sigma coordinate in the vertical direction facilitate the use of the model in complicated geometries. 5: The fifth sub-project consists in developing a well-balanced three-dimensional shallow water model which is able to simulate shock waves over dry bed. Due to the hydrostatic simplification of the vertical momentum equation, the governing system of equations is not hyperbolic and can not be solved using standard hyperbolic solvers. That is, one can not use a high-order Godunov-type scheme to compute all fluxes through cell-interfaces. This may cause the model to fail in simulations of some unsteady-flows with discontinuities, e.g., dam-break flows and floods. To overcome this difficulty, a novel numerical scheme for the three-dimensional shallow water equations is proposed using a relaxation approach in order to convert the system to a hyperbolic one. Thus, a high-order Godunov-type central-upwind scheme based on the finite volume method can be applied to approximate the numerical fluxes. The proposed model can also preserve the ``lake at rest'' state and positivity of water depth over irregular bottom topographies based on special reconstruction of the corresponding parameters. 6: The sixth sub-project consists in extending the result of the fifth sub-project to development of a three-dimensional numerical model for shallow water flows over mobile beds, which is able to simulate morphological evolutions under shock waves, e.g. dam-break flows. The hydrodynamic model solves the three-dimensional shallow water equations using a finite volume method on prismatic cells in sigma coordinates based on the scheme prposed in sub-project 5. The morphodynamic model solves an Exner equation consisting of bed-load sediment transportation. The performance of the proposed model has been demonstrated by several laboratory experiments of dam-break flows over mobile beds.

Book Shock Capturing Methods for Free Surface Shallow Flows

Download or read book Shock Capturing Methods for Free Surface Shallow Flows written by E. F. Toro and published by . This book was released on 2001-03-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of its kind in the field, this title examines the use of modern, shock-capturing finite volume numerical methods, in the solution of partial differential equations associated with free-surface flows, which satisfy the shallow-water type assumption (including shallow water flows, dense gases and mixtures of materials as special samples). Starting with a general presentation of the governing equations for free-surface shallow flows and a discussion of their physical applicability, the book goes on to analyse the mathematical properties of the equations, in preparation for the presentation of the exact solution of the Riemann problem for wet and dry beds. After a general introduction to the finite volume approach, several chapters are then devoted to describing a variety of modern shock-capturing finite volume numerical methods, including Godunov methods of the upwind and centred type. Approximate Riemann solvers following various approaches are studied in detail as is their use in the Godunov approach for constructing low and high-order upwind TVD methods. Centred TVD schemes are also presented. Two chapters are then devoted to practical applications. The book finishes with an overview of potential practical applications of the methods studied, along with appropriate reference to sources of further information. Features include: * Algorithmic and practical presentation of the methods * Practical applications such as dam-break modelling and the study of bore reflection patterns in two space dimensions * Sample computer programs and accompanying numerical software (details available at www.numeritek.com) The book is suitable for teaching postgraduate students of civil, mechanical, hydraulic and environmental engineering, meteorology, oceanography, fluid mechanics and applied mathematics. Selected portions of the material may also be useful in teaching final year undergraduate students in the above disciplines. The contents will also be of interest to research scientists and engineers in academia and research and consultancy laboratories.

Book Mathematical Model of Multi dimensional Shear Shallow Water Flows

Download or read book Mathematical Model of Multi dimensional Shear Shallow Water Flows written by Kseniya Ivanova and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is devoted to the numerical modelling of multi-dimensional shear shallow water flows. In 1D case, the corresponding equations coincide with the equations describing non--isentropic gas flows with a special equation of state. However, in the multi-D case, the system differs significantly from the gas dynamics model. This is a 2D hyperbolic non-conservative system of equations which is reminiscent of a generic Reynolds averaged model of barotropic turbulent flows. The model has three families of characteristics corresponding to the propagation of surface waves, shear waves and average flow (contact characteristics). First, we show the ability of the one-dimensional conservative shear shallow water model to predict the formation of roll-waves from unstable initial data. The stability of roll waves is also studied.Second, we present in 2D case a new numerical scheme based on a splitting approach for non-conservative systems of equations. Each split subsystem contains only one family of waves (either surface or shear waves) and contact characteristics. The accuracy of such an approach is tested on exact 2D solutions describing the flow where the velocity is linear with respect to the space variables, and on the solutions describing 1D roll waves. Finally, we model a circular hydraulic jump formed in a convergent radial flow of water. Obtained numerical results are qualitatively similar to those observed experimentally: oscillation of the hydraulic jump and its rotation with formation of a singular point. These validations demonstrate the capability of the model and numerical method to solve challenging multi--dimensional problems of shear shallow water flows.

Book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method

Download or read book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method written by Abdul A. Khan and published by CRC Press. This book was released on 2014-03-03 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the discontinuous Galerkin (DG) method and its application to shallow water flows. The emphasis is to show details and modifications required to apply the scheme to real-world flow problems. It allows the readers to understand and develop robust and efficient computer simulation models that can be used to model flow, contaminant transport, and other factors in rivers and coastal environments. The book includes a large set of tests to illustrate the use of the model for a wide range of applications.

Book River Basin Modelling for Flood Risk Mitigation

Download or read book River Basin Modelling for Flood Risk Mitigation written by Donald Knight and published by CRC Press. This book was released on 2005-11-17 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flooding accounts for one-third of natural disasters worldwide and for over half the deaths which occur as a result of natural disasters. As the frequency and volume of flooding increases, as a result of climate change, there is a new urgency amongst researchers and professionals working in flood risk management. River Basin Modelling for Flood Risk Mitigation brings together thirty edited papers by leading experts who gathered for the European Union’s Advanced Study Course at the University of Birmingham, UK. The scope of the course ranged from issues concerning the protection of life, to river restoration and wetland management. A variety of topics is covered in the book including climate change, hydro-informatics, hydro-meterology, river flow forecasting systems and dam-break modelling. The approach is broad, but integrated, providing an attractive and informative package that will satisfy researchers and professionals, while offering a sound introduction to students in Engineering and Geography.

Book Two dimensional Flow Modeling

Download or read book Two dimensional Flow Modeling written by Robert C. MacArthur and published by . This book was released on 1982 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method

Download or read book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method written by Abdul A. Khan and published by CRC Press. This book was released on 2014-03-03 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fields of science and engineering, its use for hydraulics has so far been limited to simple cases. The book compares numerical results with laboratory experiments and field data, and includes a set of tests that can be used for a wide range of applications. Provides step-by-step implementation details Presents the different forms in which the shallow water flow equations can be written Places emphasis on the details and modifications required to apply the scheme to real-world flow problems This text enables readers to readily understand and develop an efficient computer simulation model that can be used to model flow, contaminant transport, and other aspects in rivers and coastal environments. It is an ideal resource for practicing environmental engineers and researchers in the area of computational hydraulics and fluid dynamics, and graduate students in computational hydraulics.

Book Finite Volume Methods for Hyperbolic Problems

Download or read book Finite Volume Methods for Hyperbolic Problems written by Randall J. LeVeque and published by Cambridge University Press. This book was released on 2002-08-26 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Book Computational Algorithms for Shallow Water Equations

Download or read book Computational Algorithms for Shallow Water Equations written by Eleuterio F. Toro and published by Springer Nature. This book was released on with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quasi three dimensional numerical modelling of flow and dispersion in shallow water

Download or read book Quasi three dimensional numerical modelling of flow and dispersion in shallow water written by Xian-You Jin and published by . This book was released on 1993 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Modelling of Hydrodynamics for Water Resources

Download or read book Numerical Modelling of Hydrodynamics for Water Resources written by Pilar Garcia Navarro and published by CRC Press. This book was released on 2007-11-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overland flow modelling has been an active field of research for some years, but developments in numerical methods and computational resources have recently accelerated progress, producing models for different geometries and types of flows, such as simulations of canal and river networks. Flow in canals has traditionally been described using one-dimensional, depth-averaged, shallow water models; but a variety of simulation techniques now facilitate the management of hydrodynamic systems, providing models which incorporate complex geometry and diverse flows. Much effort has gone into elaborating canal operational rules based on decision support systems, with the dual aim of assuring water delivery and meeting flow control constraints. In natural water courses, water management problems are associated with the need to meet quality standards. Numerical modelling of advection-diffusion can be used to manage problems related to the movement of solutes in rivers and aquifers. The analysis of solute transport is used to safeguard the quality of surface and ground water and to help prevent eutrophication. Solute flow through the soil can be dynamically linked to overland flow for hydrological and agricultural applications. Advances in modelling also cast new light on sediment transport in rivers, exploring the complex dynamics of river bed erosion and deposition and assist in thee analysis of river-reservoir systems. All these issues are discussed in Numerical Modelling of Hydrodynamics for Water Resources, which will be useful to civil engineers, applied mathematicians, hydrologists, and physicists.