EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Modeling of Thermal Recovery Processes

Download or read book Numerical Modeling of Thermal Recovery Processes written by Stanford University. Petroleum Research Institute and published by . This book was released on 1981 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Modeling of Thermal Recovery Processes

Download or read book Numerical Modeling of Thermal Recovery Processes written by Mohamed Yousef Soliman and published by . This book was released on 1979 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient Simulation of Thermal Enhanced Oil Recovery Processes

Download or read book Efficient Simulation of Thermal Enhanced Oil Recovery Processes written by Zhouyuan Zhu and published by Stanford University. This book was released on 2011 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulating thermal processes is usually computationally expensive because of the complexity of the problem and strong nonlinearities encountered. In this work, we explore novel and efficient simulation techniques to solve thermal enhanced oil recovery problems. We focus on two major topics: the extension of streamline simulation for thermal enhanced oil recovery and the efficient simulation of chemical reaction kinetics as applied to the in-situ combustion process. For thermal streamline simulation, we first study the extension to hot water flood processes, in which we have temperature induced viscosity changes and thermal volume changes. We first compute the pressure field on an Eulerian grid. We then solve for the advective parts of the mass balance and energy equations along the individual streamlines, accounting for the compressibility effects. At the end of each global time step, we account for the nonadvective terms on the Eulerian grid along with gravity using operator splitting. We test our streamline simulator and compare the results with a commercial thermal simulator. Sensitivity studies for compressibility, gravity and thermal conduction effects are presented. We further extended our thermal streamline simulation to steam flooding. Steam flooding exhibits large volume changes and compressibility associated with the phase behavior of steam, strong gravity segregation and override, and highly coupled energy and mass transport. To overcome these challenges we implement a novel pressure update along the streamlines, a Glowinski scheme operator splitting and a preliminary streamline/finite volume hybrid approach. We tested our streamline simulator on a series of test cases. We compared our thermal streamline results with those computed by a commercial thermal simulator for both accuracy and efficiency. For the cases investigated, we are able to retain solution accuracy, while reducing computational cost and gaining connectivity information from the streamlines. These aspects are useful for reservoir engineering purposes. In traditional thermal reactive reservoir simulation, mass and energy balance equations are solved numerically on discretized reservoir grid blocks. The reaction terms are calculated through Arrhenius kinetics using cell-averaged properties, such as averaged temperature and reactant concentrations. For the in-situ combustion process, the chemical reaction front is physically very narrow, typically a few inches thick. To capture accurately this front, centimeter-sized grids are required that are orders of magnitude smaller than the affordable grid block sizes for full field reservoir models. To solve this grid size effect problem, we propose a new method based on a non-Arrhenius reaction upscaling approach. We do not resolve the combustion front on the grid, but instead use a subgrid-scale model that captures the overall effects of the combustion reactions on flow and transport, i.e. the amount of heat released, the amount of oil burned and the reaction products generated. The subgrid-scale model is calibrated using fine-scale highly accurate numerical simulation and laboratory experiments. This approach significantly improves the computational speed of in-situ combustion simulation as compared to traditional methods. We propose the detailed procedures to implement this methodology in a field-scale simulator. Test cases illustrate the solution consistency when scaling up the grid sizes in multidimensional heterogeneous problems. The methodology is also applicable to other subsurface reactive flow modeling problems with fast chemical reactions and sharp fronts. Displacement front stability is a major concern in the design of all the enhanced oil recovery processes. Historically, premature combustion front break through has been an issue for field operations of in-situ combustion. In this work, we perform detailed analysis based on both analytical methods and numerical simulation. We identify the different flow regimes and several driving fronts in a typical 1D ISC process. For the ISC process in a conventional mobile heavy oil reservoir, we identify the most critical front as the front of steam plateau driving the cold oil bank. We discuss the five main contributors for this front stability/instability: viscous force, condensation, heat conduction, coke plugging and gravity. Detailed numerical tests are performed to test and rank the relative importance of all these different effects.

Book Efficient Simulation of Thermal Enhanced Oil Recovery Processes

Download or read book Efficient Simulation of Thermal Enhanced Oil Recovery Processes written by Zhouyuan Zhu and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulating thermal processes is usually computationally expensive because of the complexity of the problem and strong nonlinearities encountered. In this work, we explore novel and efficient simulation techniques to solve thermal enhanced oil recovery problems. We focus on two major topics: the extension of streamline simulation for thermal enhanced oil recovery and the efficient simulation of chemical reaction kinetics as applied to the in-situ combustion process. For thermal streamline simulation, we first study the extension to hot water flood processes, in which we have temperature induced viscosity changes and thermal volume changes. We first compute the pressure field on an Eulerian grid. We then solve for the advective parts of the mass balance and energy equations along the individual streamlines, accounting for the compressibility effects. At the end of each global time step, we account for the nonadvective terms on the Eulerian grid along with gravity using operator splitting. We test our streamline simulator and compare the results with a commercial thermal simulator. Sensitivity studies for compressibility, gravity and thermal conduction effects are presented. We further extended our thermal streamline simulation to steam flooding. Steam flooding exhibits large volume changes and compressibility associated with the phase behavior of steam, strong gravity segregation and override, and highly coupled energy and mass transport. To overcome these challenges we implement a novel pressure update along the streamlines, a Glowinski scheme operator splitting and a preliminary streamline/finite volume hybrid approach. We tested our streamline simulator on a series of test cases. We compared our thermal streamline results with those computed by a commercial thermal simulator for both accuracy and efficiency. For the cases investigated, we are able to retain solution accuracy, while reducing computational cost and gaining connectivity information from the streamlines. These aspects are useful for reservoir engineering purposes. In traditional thermal reactive reservoir simulation, mass and energy balance equations are solved numerically on discretized reservoir grid blocks. The reaction terms are calculated through Arrhenius kinetics using cell-averaged properties, such as averaged temperature and reactant concentrations. For the in-situ combustion process, the chemical reaction front is physically very narrow, typically a few inches thick. To capture accurately this front, centimeter-sized grids are required that are orders of magnitude smaller than the affordable grid block sizes for full field reservoir models. To solve this grid size effect problem, we propose a new method based on a non-Arrhenius reaction upscaling approach. We do not resolve the combustion front on the grid, but instead use a subgrid-scale model that captures the overall effects of the combustion reactions on flow and transport, i.e. the amount of heat released, the amount of oil burned and the reaction products generated. The subgrid-scale model is calibrated using fine-scale highly accurate numerical simulation and laboratory experiments. This approach significantly improves the computational speed of in-situ combustion simulation as compared to traditional methods. We propose the detailed procedures to implement this methodology in a field-scale simulator. Test cases illustrate the solution consistency when scaling up the grid sizes in multidimensional heterogeneous problems. The methodology is also applicable to other subsurface reactive flow modeling problems with fast chemical reactions and sharp fronts. Displacement front stability is a major concern in the design of all the enhanced oil recovery processes. Historically, premature combustion front break through has been an issue for field operations of in-situ combustion. In this work, we perform detailed analysis based on both analytical methods and numerical simulation. We identify the different flow regimes and several driving fronts in a typical 1D ISC process. For the ISC process in a conventional mobile heavy oil reservoir, we identify the most critical front as the front of steam plateau driving the cold oil bank. We discuss the five main contributors for this front stability/instability: viscous force, condensation, heat conduction, coke plugging and gravity. Detailed numerical tests are performed to test and rank the relative importance of all these different effects.

Book Thermal Methods of Oil R

    Book Details:
  • Author : Burger J.
  • Publisher : Editions OPHRYS
  • Release : 1985
  • ISBN : 9782710810605
  • Pages : 456 pages

Download or read book Thermal Methods of Oil R written by Burger J. and published by Editions OPHRYS. This book was released on 1985 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical and Numerical Modeling in Porous Media

Download or read book Mathematical and Numerical Modeling in Porous Media written by Martin A. Diaz Viera and published by CRC Press. This book was released on 2012-07-24 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1993 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Modeling of Geomechanical Effects of Steam Injection in SAGD Heavy Oil Recovery

Download or read book Numerical Modeling of Geomechanical Effects of Steam Injection in SAGD Heavy Oil Recovery written by Setayesh Zandi and published by . This book was released on 2011 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Steam Assisted Gravity Drainage (SAGD) process is a thermal enhanced oil recovery (EOR) method that appears tremendously successful, especially for bitumen. SAGD process results in a complex interaction of geomechanics and multiphase flow in cohesionless porous media. In this process, continuous steam injection changes reservoir pore pressure and temperature, which can increase or decrease the effective stresses in the reservoir. Quantification of the state of deformation and stress in the reservoir is essential for the correct prediction of reservoir productivity, seal integrity, hydro fracturing, well failure and also for the interpretation of 4D seismic used to follow the development of the steam chamber. In SAGD process, the analysis of reservoir-geomechanics is concerned with the simultaneous study of fluid flow and mechanical response of the reservoir. Reservoir-geomechanics coupled simulation is still an important research topic. To perform this kind of simulation, a solution is to use a finite element based simulator to describe geomechanics and a finite volume based simulator to describe fluid flow. In this thesis, the SAGD coupled thermo-hydro-mechanical modelling is conducted using PumaFlow reservoir simulator and Abaqus as the geomechanical simulator. The main issues being investigated in this study were (1) the coupling strategy, (2) the geometry and (3) type of gridding system. This work was performed on synthetic cases.

Book 4D Numerical Modeling of Petroleum Reservoir Recovery

Download or read book 4D Numerical Modeling of Petroleum Reservoir Recovery written by Margit Munka and published by Akademiai Kiads. This book was released on 2001 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1981 with total page 1370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Numerical Simulation for Next Generation Thermal Power Plants

Download or read book Numerical Simulation for Next Generation Thermal Power Plants written by Falah Alobaid and published by Springer. This book was released on 2018-03-29 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides highly specialized researchers and practitioners with a major contribution to mathematical models’ developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.

Book A Thermochemical Heat Storage System for Households

Download or read book A Thermochemical Heat Storage System for Households written by Armand Fopah Lele and published by Springer. This book was released on 2016-07-09 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers a comprehensive report on the design and optimization of a thermochemical heat storage system for use in buildings. It combines theoretical and experimental work, with a special emphasis on model-based methods. It describes the numerical modeling of the heat exchanger, which allows recovery of about two thirds of the waste heat from both solar and thermal energy. The book also provides readers with a snapshot of current research on thermochemical storage systems, and an in-depth review of the most important concepts and methods in thermal management modeling. It represents a valuable resource for students, engineers and researchers interested in thermal energy storage processes, as well as for those dealing with modeling and 3D simulations in the field of energy and process engineering.

Book Advances in Fluid Solid Coupling Processes between Fractures and Porous Rocks  Experimental and Numerical Investigation

Download or read book Advances in Fluid Solid Coupling Processes between Fractures and Porous Rocks Experimental and Numerical Investigation written by Shiming Wei and published by Frontiers Media SA. This book was released on with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is the key measure for improving recovery of unconventional oil and gas reservoirs. Prediction of fracture morphology and productivity after fracturing is critical for fracturing design and optimization. The hydraulic fracturing process is to open porous rocks by artificially injecting highly compressed fluid, and the hydraulic fracture will be closed under the compaction of in-situ stress during the production process. In this regard, hydraulic fracturing and production processes are both fluid-solid coupling processes involving fractures and porous rocks. This Research Topic aims to gather the latest studies addressing how to improve the prediction accuracy of hydraulic fracturing morphology and post-fracturing productivity through experimental and numerical investigation. The experimental research shall underline hydraulic fracturing and fracture conductivity experiments and associated experimental methods, while the numerical research shall pay particular attention to discrete fracture network models, including the calculation efficiency and accuracy as well as the applicability.

Book Fossil Energy Update

Download or read book Fossil Energy Update written by and published by . This book was released on 1981 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy

    Book Details:
  • Author :
  • Publisher :
  • Release : 1982
  • ISBN :
  • Pages : 418 pages

Download or read book Energy written by and published by . This book was released on 1982 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy  a Continuing Bibliography with Indexes

Download or read book Energy a Continuing Bibliography with Indexes written by and published by . This book was released on 1982 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analytical Modeling of Transient Heat Transfer Coupled With Fluid Flow in Heavy Oil Reservoirs During Thermal Recovery Processes

Download or read book Analytical Modeling of Transient Heat Transfer Coupled With Fluid Flow in Heavy Oil Reservoirs During Thermal Recovery Processes written by Kuizheng Yu and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: