Download or read book International Aerospace Abstracts written by and published by . This book was released on 1996 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1978 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Condensed Matter Field Theory written by Alexander Altland and published by Cambridge University Press. This book was released on 2010-03-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Download or read book U S Government Research Reports written by and published by . This book was released on 1963 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dissertation Abstracts International written by and published by . This book was released on 1970 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Physics for Mathematicians written by Michael Spivak and published by . This book was released on 2010 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Reviews written by and published by . This book was released on 1994 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1987 with total page 1390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Download or read book Droplet Wetting and Evaporation written by David Brutin and published by Academic Press. This book was released on 2015-05-11 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Droplet Wetting and Evaporation provides engineers, students, and researchers with the first comprehensive guide to the theory and applications of droplet wetting and evaporation. Beginning with a relevant theoretical background, the book moves on to consider specific aspects, including heat transfer, flow instabilities, and the drying of complex fluid droplets. Each chapter covers the principles of the subject, addressing corresponding practical issues and problems. The text is ideal for a broad range of domains, from aerospace and materials, to biomedical applications, comprehensively relaying the challenges and approaches from the different communities leading the way in droplet research and development. - Provides a broad, cross-subject coverage of theory and application that is ideal for engineers, students and researchers who need to follow all major developments in this interdisciplinary field - Includes comprehensive discussions of heat transfer, flow instabilities, and the drying of complex fluid droplets - Begins with an accessible summary of fundamental theory before moving on to specific areas such as heat transfer, flow instabilities, and the drying of complex fluid droplets
Download or read book Field Theory of Non Equilibrium Systems written by Alex Kamenev and published by Cambridge University Press. This book was released on 2011-09-08 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of non-equilibrium many-body systems is one of the most rapidly expanding areas of theoretical physics. Traditionally used in the study of laser physics and superconducting kinetics, these techniques have more recently found applications in the study of dynamics of cold atomic gases, mesoscopic and nano-mechanical systems. The book gives a self-contained presentation of the modern functional approach to non-equilibrium field-theoretical methods. They are applied to examples ranging from biophysics to the kinetics of superfluids and superconductors. Its step-by-step treatment gives particular emphasis to the pedagogical aspects, making it ideal as a reference for advanced graduate students and researchers in condensed matter physics.
Download or read book Worlds of Flow written by Olivier Darrigol and published by Oxford University Press. This book was released on 2005-09 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first fully-fledged history of hydrodynamics, including lively accounts of the concrete problems of hydraulics, navigation, blood circulation, meteorology, and aeronautics that motivated the main conceptual innovations. Richly illustrated, technically competent, and philosophically sensitive, it should attract a broad audience and become a standard reference for any one interested in fluid mechanics.
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1975 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Physical Foundations of Cosmology written by Viatcheslav Mukhanov and published by Cambridge University Press. This book was released on 2005-11-10 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
Download or read book Wind Turbine Aerodynamics and Vorticity Based Methods written by Emmanuel Branlard and published by Springer. This book was released on 2017-04-05 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces the fundamentals of fluid-mechanics, momentum theories, vortex theories and vortex methods necessary for the study of rotors aerodynamics and wind-turbines aerodynamics in particular. Rotor theories are presented in a great level of details at the beginning of the book. These theories include: the blade element theory, the Kutta-Joukowski theory, the momentum theory and the blade element momentum method. A part of the book is dedicated to the description and implementation of vortex methods. The remaining of the book focuses on the study of wind turbine aerodynamics using vortex-theory analyses or vortex-methods. Examples of vortex-theory applications are: optimal rotor design, tip-loss corrections, yaw-models and dynamic inflow models. Historical derivations and recent extensions of the models are presented. The cylindrical vortex model is another example of a simple analytical vortex model presented in this book. This model leads to the development of different BEM models and it is also used to provide the analytical velocity field upstream of a turbine or a wind farm under aligned or yawed conditions. Different applications of numerical vortex methods are presented. Numerical methods are used for instance to investigate the influence of a wind turbine on the incoming turbulence. Sheared inflows and aero-elastic simulations are investigated using vortex methods for the first time. Many analytical flows are derived in details: vortex rings, vortex cylinders, Hill's vortex, vortex blobs etc. They are used throughout the book to devise simple rotor models or to validate the implementation of numerical methods. Several Matlab programs are provided to ease some of the most complex implementations.
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1975-11 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Classical Electrodynamics written by John David Jackson and published by . This book was released on 1962 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems after each chapter
Download or read book Quantum Field Theory written by Eduardo Fradkin and published by Princeton University Press. This book was released on 2021-03-23 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only graduate-level textbook on quantum field theory that fully integrates perspectives from high-energy, condensed-matter, and statistical physics Quantum field theory was originally developed to describe quantum electrodynamics and other fundamental problems in high-energy physics, but today has become an invaluable conceptual and mathematical framework for addressing problems across physics, including in condensed-matter and statistical physics. With this expansion of applications has come a new and deeper understanding of quantum field theory—yet this perspective is still rarely reflected in teaching and textbooks on the subject. Developed from a year-long graduate course Eduardo Fradkin has taught for years to students of high-energy, condensed-matter, and statistical physics, this comprehensive textbook provides a fully "multicultural" approach to quantum field theory, covering the full breadth of its applications in one volume. Brings together perspectives from high-energy, condensed-matter, and statistical physics in both the main text and exercises Takes students from basic techniques to the frontiers of physics Pays special attention to the relation between measurements and propagators and the computation of cross sections and response functions Focuses on renormalization and the renormalization group, with an emphasis on fixed points, scale invariance, and their role in quantum field theory and phase transitions Other topics include non-perturbative phenomena, anomalies, and conformal invariance Features numerous examples and extensive problem sets Also serves as an invaluable resource for researchers