EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nuclear spin Induced Electron Spin Decoherence in Semiconductor Quantum Dots

Download or read book Nuclear spin Induced Electron Spin Decoherence in Semiconductor Quantum Dots written by Hugo Ribeiro and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electron   Nuclear Spin Dynamics in Semiconductor Nanostructures

Download or read book Electron Nuclear Spin Dynamics in Semiconductor Nanostructures written by M. M. Glazov and published by Oxford University Press. This book was released on 2018-09-05 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, the solid state systems, particularly, semiconductors and semiconductor nanosystems, allow us to perform benchtop studies of quantum and relativistic phenomena. On the other hand, this interest is supported by the prospects of realizing spin-based electronics, where the electron or nuclear spins may play a role of quantum or classical information carriers. This book looks in detail at the physics of interacting systems of electron and nuclear spins in semiconductors, with particular emphasis on low-dimensional structures. These two spin systems naturally appear in practically all widespread semiconductor compounds. The hyperfine interaction of the charge carriers and nuclear spins is particularly prominent in nanosystems due to the localization of the charge carriers, and gives rise to spin exchange between these two systems and a whole range of beautiful and complex physics of manybody and nonlinear systems. As a result, understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and controlling the spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and spin-Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focussing, as well as fluctuations of electron and nuclear spins.

Book Spin and Charge Dynamics in Semiconductor Quantum Dots

Download or read book Spin and Charge Dynamics in Semiconductor Quantum Dots written by Changxue Deng and published by . This book was released on 2007 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, we present detailed studies on the nuclear spin dynamics and relaxation, electron spin decoherence, and non-equilibrium electronic transport in Kondo regime for semiconductor quantum dots. We calculate the coefficients of nuclear spin diffusion with two different methods. It is shown that hyperfine interaction decreases the diffusion coefficients dramatically. We discuss the performance of the coherent spin transfer with the nuclear quantum memory using quantum dot, and calculate the operation fidelity due to nuclear spin dipolar coupling. We also study the possible nuclear spin polarization and relaxation mechanism in a spin-blocked double-dot, and qualitatively explain some of the recent experimental results. We study the electron spin decoherence time (T 2) resulting from hyperfine coupling with the equation-of-motion approach. We show that the transverse electron spin undergoes a complete decay in the long time limit by including higher-order processes. Finally we develop a real-time density matrix method and apply it to study the non-equilibrium electron transport through quantum dots in the context of Kondo effect.

Book Spins in Optically Active Quantum Dots

Download or read book Spins in Optically Active Quantum Dots written by Oliver Gywat and published by John Wiley & Sons. This book was released on 2010-02-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling a gap in the literature, this up-to-date introduction to the field provides an overview of current experimental techniques, basic theoretical concepts, and sample fabrication methods. Following an introduction, this monograph deals with optically active quantum dots and their integration into electro-optical devices, before looking at the theory of quantum confined states and quantum dots interacting with the radiation field. Final chapters cover spin-spin interaction in quantum dots as well as spin and charge states, showing how to use single spins for break-through quantum computation. A conclusion and outlook round off the volume. The result is a primer providing the essential basic knowledge necessary for young researchers entering the field, as well as semiconductor and theoretical physicists, PhD students in physics and material sciences, electrical engineers and materials scientists.

Book Theory of Quantum Control of Spin photon Dynamics and Spin Decoherence in Semiconductors

Download or read book Theory of Quantum Control of Spin photon Dynamics and Spin Decoherence in Semiconductors written by Wang Yao and published by . This book was released on 2006 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single electron spin in a semiconductor quantum dot (QD) and single photon wavepacket propagating in an optical waveguide are investigated as carriers of quantum bit (qubit) for information processing. Cavity quantum electrodynamics of the coupled system composed of charged QD, microcavity and waveguide provides a quantum interface for the interplay of stationary spin qubits and flying photon qubits via cavity assisted optical control. This interface forms the basis for a wide range of essential functions of a quantum network, including transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape. The cavity assisted optical process also made possible ultrafast initialization and QND readout of the spin qubit in QD. In addition, the strong optical nonlinearity of dot-cavity-waveguide coupled system enables phase gate and entanglement operation for flying single photon qubits in waveguides. The coherence of the electron spin is the wellspring of these quantum applications being investigated. At low temperature and strong magnetic field, the dominant cause of electron spin decoherence is the coupling with the interacting lattice nuclear spins. We present a quantum solution to the coupled dynamics of the electron with the nuclear spin bath. The decoherence is treated in terms of quantum entanglement of the electron with the nuclear pair-flip excitations driven by the various nuclear interactions. A novel nuclear interaction, mediated by virtue spin-flips of the single electron, plays an important role in single spin free-induction decay (FID). The spin echo not only refocuses the dephasing by inhomogeneous broadening in ensemble dynamics but also eliminates the decoherence by electron-mediated nuclear interaction. Thus, the decoherence times for single spin FID and ensemble spin echo are significantly different. The quantum theory of decoherence also leads to a method of coherence recovery of the electron by disentanglement, realized through maneuvering the nuclear bath evolution by control of the electron spin-flip. The studies form the basis to outline the construction of a solid-state quantum network for scalable and distributed processing of quantum information.

Book Electron and Nuclear Spin Dynamics in Semiconductor Nanostructures

Download or read book Electron and Nuclear Spin Dynamics in Semiconductor Nanostructures written by M. M. Glazov and published by . This book was released on 2018 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the main aspects of electron and nuclear spin dynamics in semiconductor nanostructures. It summarizes main results of theoretical and experimental studies of interactions in spin systems, effects of ultrafast spin manipulation by light, phenomena of spin losses, and the physics of the omnipresent spin noise.

Book Principles of Pulse Electron Paramagnetic Resonance

Download or read book Principles of Pulse Electron Paramagnetic Resonance written by Arthur Schweiger and published by . This book was released on 2001 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulse EPR (electron paramagnetic resonance) is one of the newest and most widely used techniques for examining the structure, function and dynamics of biological systems and synthetic materials. Until now, however, there has been no single text dedicated to this growing area of research. This text addresses the need for a comprehensive overview of Pulse EPR. The book covers the basic theory of pulse EPR, as well as a description and critical evaluation of the existing and emerging methods needed for selecting and conducting the proper experiment and analyzing the results. This is an indispensable reference for all scientists who need a thorough grounding in this increasingly popular field of spectroscopy.

Book Single Semiconductor Quantum Dots

Download or read book Single Semiconductor Quantum Dots written by Peter Michler and published by Springer Science & Business Media. This book was released on 2009-06-13 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.

Book Handbook of Spintronics

Download or read book Handbook of Spintronics written by Yongbing Xu and published by Springer. This book was released on 2015-10-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.

Book Electron Spin Resonance and Related Phenomena in Low Dimensional Structures

Download or read book Electron Spin Resonance and Related Phenomena in Low Dimensional Structures written by Marco Fanciulli and published by Springer Science & Business Media. This book was released on 2009-08-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a discussion of the state of the art of spin resonance in low dimensional structures, such as two-dimensional electron systems, quantum wires, and quantum dots. Leading scientists report on recent advances and discuss open issues and perspectives.

Book Quantum Dots

    Book Details:
  • Author : Alexander Tartakovskii
  • Publisher : Cambridge University Press
  • Release : 2012-07-19
  • ISBN : 1107012589
  • Pages : 377 pages

Download or read book Quantum Dots written by Alexander Tartakovskii and published by Cambridge University Press. This book was released on 2012-07-19 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of cutting-edge solid state research, focusing on quantum dot nanostructures, for graduate students and researchers.

Book Optical Nuclear Spin Polarization in Quantum Dots  Project Partially Supported by the National Natural Science Foundations of China  Grant Nos  11374039 and 11174042  and the National Basic Research Program of China  Grant Nos  2011CB922204 and 2013CB632805

Download or read book Optical Nuclear Spin Polarization in Quantum Dots Project Partially Supported by the National Natural Science Foundations of China Grant Nos 11374039 and 11174042 and the National Basic Research Program of China Grant Nos 2011CB922204 and 2013CB632805 written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.

Book Semiconductor Quantum Bits

Download or read book Semiconductor Quantum Bits written by Fritz Henneberger and published by CRC Press. This book was released on 2016-04-19 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights state-of-the-art qubit implementations in semiconductors and provides an extensive overview of this newly emerging field. Semiconductor nanostructures have huge potential as future quantum information devices as they provide various ways of qubit implementation (electron spin, electronic excitation) as well as a way to transfer

Book Spin Physics in Semiconductors

    Book Details:
  • Author : Mikhail I. Dyakonov
  • Publisher : Springer Science & Business Media
  • Release : 2008-07-18
  • ISBN : 3540788204
  • Pages : 451 pages

Download or read book Spin Physics in Semiconductors written by Mikhail I. Dyakonov and published by Springer Science & Business Media. This book was released on 2008-07-18 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this collective book is to present a non-exhaustive survey of sp- related phenomena in semiconductors with a focus on recent research. In some sense it may be regarded as an updated version of theOpticalOrientation book, which was entirely devoted to spin physics in bulk semiconductors. During the 24 years that have elapsed, we have witnessed, on the one hand, an extraordinary development in the wonderful semiconductor physics in two dim- sions with the accompanying revolutionary applications. On the other hand, during the last maybe 15 years there was a strong revival in the interest in spin phen- ena, in particular in low-dimensional semiconductor structures. While in the 1970s and 1980s the entire world population of researchers in the ?eld never exceeded 20 persons, now it can be counted by the hundreds and the number of publications by the thousands. This explosive growth is stimulated, to a large extent, by the hopes that the electron and/or nuclear spins in a semiconductor will help to accomplish the dream of factorizing large numbers by quantum computing and eventually to develop a new spin-based electronics, or “spintronics”. Whether any of this will happen or not, still remains to be seen. Anyway, these ideas have resulted in a large body of interesting and exciting research, which is a good thing by itself. The ?eld of spin physics in semiconductors is extremely rich and interesting with many spectacular effects in optics and transport.

Book Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures

Download or read book Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures written by Toshihide Takagahara and published by Academic Press. This book was released on 2003-02-10 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures

Book Spin Decoherence of Electrons and Holes in Semiconductor Quantum Dots

Download or read book Spin Decoherence of Electrons and Holes in Semiconductor Quantum Dots written by Jan Fischer and published by . This book was released on 2010 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Spintronics and Quantum Computation

Download or read book Semiconductor Spintronics and Quantum Computation written by D.D. Awschalom and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.