EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonlinear Finite element Analysis of Reinforced concrete Beams Retrofitted with Externally Bonded Fibre reinforced Polymers

Download or read book Nonlinear Finite element Analysis of Reinforced concrete Beams Retrofitted with Externally Bonded Fibre reinforced Polymers written by Alrazi Earij and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams

Download or read book Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams written by Xiaoshan Lin and published by Woodhead Publishing. This book was released on 2019-10-18 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. - Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams - Presents new composite beam elements developed by the authors - Introduces numerical techniques for the development of effective finite element models using commercial software - Discusses the critical issues encountered in structural analysis - Maintains a clear focus on advanced numerical modeling

Book Finite Element Modeling of Reinforced Concrete Beams Externally Strengthened by FRP Composites

Download or read book Finite Element Modeling of Reinforced Concrete Beams Externally Strengthened by FRP Composites written by Tanarat Potisuk and published by . This book was released on 2000 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional finite element models are developed to simulate the behavior of four fill-scale reinforced concrete beams. The beams are constructed with different fiber-reinforced polymer (FRP) strengthening schemes, and are modeled using ANSYS, a commercially available finite element analysis program. The experimental beams replicate the transverse beams of the Horsetail Creek Bridge, and were constructed and tested at Oregon State University. The finite element models use a smeared cracking approach for the concrete and three-dimensional layered elements to model the FRP composites. It was found that the finite element models could effectively simulate the behavior of the full-scale beams. Results obtained from the finite element analysis are presented and compared with the experimental data from the full-scale beam tests through the linear and nonlinear ranges up to failure. Comparisons are made for load-strain plots, load-deflection plots, first cracking loads, loads at failure, and crack patterns at failure. The results from the finite element analysis show good agreement with those from the experimental data and support hand calculation predictions for the experiment very well. The crack patterns at failure predicted by the finite element program strongly corroborate the failure modes observed for the full-scale beam tests. Recommendations for finite element modeling improvement are included.

Book Retrofitting of Concrete Structures by Externally Bonded FRPs  With Emphasis on Seismic Applications

Download or read book Retrofitting of Concrete Structures by Externally Bonded FRPs With Emphasis on Seismic Applications written by fib Fédération internationale du béton and published by fib Fédération internationale du béton. This book was released on 2006-01-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: fib Bulletin 35 is the first bulletin to publish documentation from an fib short course. These courses are held worldwide and cover advanced knowledge of structural concrete in general, or specific topics. They are organized by fib and given by internationally recognized experts in fib, often supplemented with local experts active in fib. They are based on the knowledge and expertise from fib's ten Commissions and nearly fifty Task Groups. fib Bulletin 35 presents the course materials developed for the short course "Retrofitting of Concrete Structures through Externally Bonded FRP, with emphasis on Seismic Applications", given in Ankara and Istanbul in June 2005. The course drew on expertise both from outside Turkey and from the large pool of local experts on this subject. In most countries of the world, the building stock is ageing and needs continuous maintenance or repair. Moreover, the majority of existing constructions are deficient in the light of current knowledge and design codes. The problem of structural deficiency of existing constructions is especially acute in seismic regions, as, even there, seismic design of structures is relatively recent. The direct and indirect costs of demolition and reconstruction of structurally deficient constructions are often prohibitive; furthermore they entail a substantial waste of natural resources and energy. Therefore, structural retrofitting is becoming increasingly widespread throughout the world. Externally bonded Fibre Reinforced Polymers (FRPs) are rapidly becoming the technique of choice for structural retrofitting. They are cleaner and easier to apply than conventional retrofitting techniques, reduce disruption to the occupancy and operation of the facility, do not generate debris or waste, and reduce health and accident hazards at the construction site as well as noise and air pollution in the surroundings. fib Bulletin 35 gives state-of-the-art coverage of retrofitting through FRPs and presents relevant provisions from three recent standardisation milestones: EN 1998-3:2005 "Eurocode 8: Design of structures for earthquake resistance - Part 3: Assessment and retrofitting of buildings", the 2005 Draft of the Turkish seismic design code, and the Italian regulatory document CNR-DT 200/04, "Instructions for Design, Execution and Control of Strengthening Interventions by Means of Fibre-Reinforced Composites" (2004).

Book Advances in FRP Composites in Civil Engineering

Download or read book Advances in FRP Composites in Civil Engineering written by Lieping Ye and published by Springer Science & Business Media. This book was released on 2012-02-01 with total page 956 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Advances in FRP Composites in Civil Engineering" contains the papers presented at the 5th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering in 2010, which is an official conference of the International Institute for FRP in Construction (IIFC). The book includes 7 keynote papers which are presented by top professors and engineers in the world and 203 papers covering a wide spectrum of topics. These important papers not only demonstrate the recent advances in the application of FRP composites in civil engineering, but also point to future research endeavors in this exciting area. Researchers and professionals in the field of civil engineering will find this book is exceedingly valuable. Prof. Lieping Ye and Dr. Peng Feng both work at the Department of Civil Engineering, Tsinghua University, China. Qingrui Yue is a Professor at China Metallurgical Group Corporation.

Book FRP

Download or read book FRP written by J. G. Teng and published by John Wiley & Sons. This book was released on 2002 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fibre-reinforced polymer (FRP) composites are used to strengthen reinforced concrete (RC) structures. A large amount of research now exists on this. This book brings together all existing research into one volume.

Book Reinforced Concrete Deep Beams

Download or read book Reinforced Concrete Deep Beams written by F K Kong and published by CRC Press. This book was released on 1991-05-01 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contents of this book have been chosen with the following main aims: to review the present coverage of the major design codes and the CIRIA guide, and to explain the fundamental behaviour of deep beams; to provide information on design topics which are inadequately covered by the current codes and design manuals; and to give authoritative revie

Book Finite Element Analysis of Retrofitted Carbon Fiber Reinforced Concrete Beams

Download or read book Finite Element Analysis of Retrofitted Carbon Fiber Reinforced Concrete Beams written by Trevor Neville Haas and published by . This book was released on 1999 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Strengthening and Rehabilitation of Civil Infrastructures Using Fibre Reinforced Polymer  FRP  Composites

Download or read book Strengthening and Rehabilitation of Civil Infrastructures Using Fibre Reinforced Polymer FRP Composites written by L C Hollaway and published by Elsevier. This book was released on 2008-07-18 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: The repair of deteriorated, damaged and substandard civil infrastructures has become one of the most important issues for the civil engineer worldwide. This important book discusses the use of externally-bonded fibre-reinforced polymer (FRP) composites to strengthen, rehabilitate and retrofit civil engineering structures, covering such aspects as material behaviour, structural design and quality assurance.The first three chapters of the book review structurally-deficient civil engineering infrastructure, including concrete, metallic, masonry and timber structures. FRP composites used in rehabilitation and surface preparation of the component materials are also reviewed. The next four chapters deal with the design of FRP systems for the flexural and shear strengthening of reinforced concrete (RC) beams and the strengthening of RC columns. The following two chapters examine the strengthening of metallic and masonry structures with FRP composites. The last four chapters of the book are devoted to practical considerations in the flexural strengthening of beams with unstressed and prestressed FRP plates, durability of externally bonded FRP composite systems, quality assurance and control, maintenance, repair, and case studies.With its distinguished editors and international team of contributors, Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites is a valuable reference guide for engineers, scientists and technical personnel in civil and structural engineering working on the rehabilitation and strengthening of the civil infrastructure. - Reviews the use of fibre-reinforced polymer (FRP) composites in structurally damaged and sub-standard civil engineering structures - Examines the role and benefits of fibre-reinforced polymer (FRP) composites in different types of structures such as masonry and metallic strengthening - Covers practical considerations including material behaviour, structural design and quality assurance

Book Nonlinear Finite Element Analysis of Reinforced Concrete Beams

Download or read book Nonlinear Finite Element Analysis of Reinforced Concrete Beams written by Zhong Yao (M. Phil.) and published by . This book was released on 2013 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rehabilitation of Concrete Structures with Fiber Reinforced Polymer

Download or read book Rehabilitation of Concrete Structures with Fiber Reinforced Polymer written by Riadh Al-Mahaidi and published by Butterworth-Heinemann. This book was released on 2018-11-12 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rehabilitation of Concrete Structures with Fiber Reinforced Polymer is a complete guide to the use of FRP in flexural, shear and axial strengthening of concrete structures. Through worked design examples, the authors guide readers through the details of usage, including anchorage systems, different materials and methods of repairing concrete structures using these techniques. Topics include the usage of FRP in concrete structure repair, concrete structural deterioration and rehabilitation, methods of structural rehabilitation and strengthening, a review of the design basis for FRP systems, including strengthening limits, fire endurance, and environmental considerations. In addition, readers will find sections on the strengthening of members under flexural stress, including failure modes, design procedures, examples and anchorage detailing, and sections on shear and torsion stress, axial strengthening, the installation of FRP systems, and strengthening against extreme loads, such as earthquakes and fire, amongst other important topics. - Presents worked design examples covering flexural, shear, and axial strengthening - Includes complete coverage of FRP in Concrete Repair - Explores the most recent guidelines (ACI440.2, 2017; AS5100.8, 2017 and Concrete society technical report no. 55, 2012)

Book Strengthening of Reinforced Concrete Structures

Download or read book Strengthening of Reinforced Concrete Structures written by L C Hollaway and published by Elsevier. This book was released on 1999-03-05 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: The in situ rehabilitation or upgrading of reinforced concrete members using bonded steel plates is an effective, convenient and economic method of improving structural performance. However, disadvantages inherent in the use of steel have stimulated research into the possibility of using fibre reinforced polymer (FRP) materials in its place, providing a non-corrosive, more versatile strengthening system.This book presents a detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforces polymer composite plates. It is based to a large extent on material developed or provided by the consortium which studied the technology of plate bonding to upgrade structural units using carbon fibre / polymer composite materials. The research and trial tests were undertaken as part of the ROBUST project, one of several ventures in the UK Government's DTI-LINK Structural Composites Programme.The book has been designed for practising structural and civil engineers seeking to understand the principles and design technology of plate bonding, and for final year undergraduate and postgraduate engineers studying the principles of highway and bridge engineering and structural engineering. - Detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforced polymer composites - Contains in-depth case histories

Book Numerical Analysis of Debonding Mechanisms of Externally Bonded FRP Reinforcement in RC Beams

Download or read book Numerical Analysis of Debonding Mechanisms of Externally Bonded FRP Reinforcement in RC Beams written by Michael Cohen and published by . This book was released on 2018 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an urgent need to develop economic and efficient methods to repair and strengthen existing reinforced concrete structures. This demand is motivated by several factors including the aging of concrete structures, the desire to upgrade design standards, and the exposure to severe environmental effects. A particular problem confronting engineers in repairing deteriorated structures is the rehabilitation of reinforced concrete elements. Conventionally, steel plates were utilized to restore and enhance the tensile strength of damaged concrete members. Despite the effectiveness of this practice in terms of improving the structural capacity, it is still considered disadvantageous due to the excessive weight of steel and its susceptibility to corrosion in moist environments. The application of fibre reinforced polymer (FRP) to existing reinforced concrete structures has gained the interest of many researchers in the last few decades. These materials are superior to steel when it comes to comparing the resistance to electrochemical corrosion, strength-to-weight ratio, ease of handling, fatigue resistance, and availability in any length or shape. However, there is still a serious concern regarding the effect of premature debonding of the FRP plates before reaching the desired strength or ductility. This debonding can initiate from the ends of the plate or can be induced by intermediate cracks in the concrete member. Although the end-plate debonding and peeling mechanisms have been studied extensively, there is still a significant lack of data for FRP-strengthened beams in which intermediate crack-induced debonding is the dominant failure mode. On the other hand, the interfacial bond capacity between the concrete and the FRP composite has not been thoroughly investigated. Whereas, there is still need to study the effect of some of the mechanical and physical parameters on the bond strength of FRP-Concrete interface. Moreover, researchers have also shown a keen interest in simulating flexural cracks in concrete beams, and examine their effect on the debonding mechanisms of FRP materials. However, more realistic approach is needed to model cracks and account for their growth. In this study, a three-dimensional nonlinear finite element model was developed for simulating the flexural behaviour of RC beams externally bonded with FRP systems. The ABAQUS/CAE software version 6.14-2 was used for this purpose. This numerical analysis was performed based on a comprehensive experimental program conducted by Brena et al. (2003). The simulated RC beams were categorized in two groups: Control Beams (without fibre) and CFRP Beams (with carbon fibre reinforced polymer). During the process of constructing the CFRP beam models, two distinct procedures were followed to simulate the interface between the concrete and the externally attached FRP laminates. Perfect bond was assumed in the first approach, and a Cohesive Zone Model (CZM) was adopted in the second approach. In the latter, cohesive surface technique was implemented in the ABAQUS model through the use of traction-separation law. Despite the lack of quantitative evaluation in the literature as no similar techniques was attempted by others, the results of this numerical analysis were only compared with experimental findings, and the proposed models were found to be reliable. A parametric study was performed to investigate the influence of various parameters on the flexural capacity of the proposed beam model, and the debonding behaviour of the externally attached FRP laminate. This analysis was conducted by either changing the mechanical properties of some of the constitutive materials (e.g. concrete and reinforcing steel), or altering the geometrical and mechanical properties of the FRP reinforcement. It was then found that the effect of internal steel reinforcement ratio has the most impact on beam ultimate capacity. While changing the FRP bond length beyond a certain value bears no effect on beam strength. Moreover, the numerical model was modified to review the effect of intermediate crack spacings on the overall beam performance. A discrete crack approach was adopted to replicate crack propagation throughout the body of the beam. This technique has shown an approximately 30% improvement in the prediction capacity of this model when compared to a similar specimen in which smeared crack approach is used. The results of this analysis showed that the debonding behaviour of FRP laminates is largely influenced by crack spacing. In addition, the results have also indicated that the initiation of FRP micro-debonding was prolonged as crack spacings were decreased. This response can be attributed to the abrasion effect within the FRP-Concrete interface. Finally, this numerical analysis provides a relatively reliable guidance on the application and the mitigation of externally bonded FRP reinforcement in concrete beams. The predictive capability of the proposed FE models ensures their suitableness for further investigations of FRP effectiveness in civil engineering field.

Book Nonlinear Finite Element Analysis of Reinforced Concrete Beams

Download or read book Nonlinear Finite Element Analysis of Reinforced Concrete Beams written by Zhong Yao (M. Phil.) and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Finite Element Analysis of Reinforced Concrete Structures Strengthened with FRP Laminates

Download or read book Nonlinear Finite Element Analysis of Reinforced Concrete Structures Strengthened with FRP Laminates written by Kasidit Chansawat and published by . This book was released on 2003 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Horsetail Creek (HC) bridge is an example of an Oregon bridge that was classified as structurally deficient and was not designed to withstand earthquake (EQ) excitations. A fiber-reinforced polymer (FRP) rehabilitation was performed on the HC bridge to increase flexural and shear capacities for traffic loads. However, a seismic retrofit has not yet been accomplished for this bridge. Fully three-dimensional finite element (FE) models are developed to simulate and examine the structural behavior of both full-size reinforced concrete (RC) beams and the HC bridge using ANSYS. FE analyses are compared with tests of full-scale beams replicating the transverse beams of the HC bridge before and after FRP strengthening from linear and nonlinear ranges up to failure. The FE models can effectively predict the behavior of the beams, and analytical and experimental results correlate very well. For the FE analyses of the HC bridge, soil-structure interface modeling is incorporated to replicate the actual bridge boundary conditions. Truck loadings are applied to the FE model at different locations, as in the actual bridge test. A sensitivity study is performed by varying uncertain bridge parameters to develop an FE bridge model best representing the actual bridge conditions. The optimal FE model obtained from the sensitivity study can accurately predict the magnitudes and trends in the strains. After an optimal FE bridge model is established, a performance evaluation on the FRP strengthening of the HC bridge is conducted. Both unstrengthened and FRP-strengthened bridge models are subjected to two different types of loading; i.e., scaled gravity and scaled truck loads to failure. Comparisons of results show the improvement in structural performance due to FRP strengthening. A seismic risk-related investigation of the HC bridge is also carried out. Nonlinear time-history analyses are performed using EQ acceleration-time histories applied to the HC bridge model. The ground motions are appropriate to the Pacific Northwest site and scaled so that the response spectrum, within natural periods of interest, matches the 1996 AASHTO design response spectrum. Based on the analytical results, colunm confinement is recommended to increase ductility and reduce potential for substructure collapse in future seismic events.