EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fluctuations and Non Equilibrium Phenomena in Strongly Correlated Ultracold Atoms

Download or read book Fluctuations and Non Equilibrium Phenomena in Strongly Correlated Ultracold Atoms written by Kazuma Nagao and published by Springer Nature. This book was released on 2020-08-25 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses non-equilibrium quantum many-body dynamics, recently explored in an analog quantum simulator of strongly correlated ultracold atoms. The first part presents a field-theoretical analysis of the experimental observability of the Higgs amplitude mode that emerges as a relativistic collective excitation near a quantum phase transition of superfluid Bose gases in an optical lattice potential. The author presents the dynamical susceptibilities to external driving of the microscopic parameters, taking into account a leading-order perturbative correction from quantum and thermal fluctuations and shows clear signatures of the Higgs mode in these observables. This is the first result that strongly supports the stability of the Higgs mode in three-dimensional optical lattices even in the presence of a spatially inhomogeneous confinement potential and paves the way for desktop observations of the Higgs mode. In the second part, the author applies the semi-classical truncated-Wigner approximation (TWA) to far-from-equilibrium quantum dynamics. Specifically, he considers the recent experiments on quantum-quench dynamics in a Bose-Hubbard quantum simulator. A direct comparison shows remarkable agreement between the numerical results from TWA and the experimental data. This result clearly indicates the potential of such a semi-classical approach in reliably simulating many-body systems using classical computers. The book also includes several chapters providing comprehensive reviews of the recent studies on cold-atomic quantum simulation and various theoretical methods, including the Schwinger-boson approach in strongly correlated systems and the phase-space semi-classical method for far-from-equilibrium quantum dynamics. These chapters are highly recommended to students and young researchers who are interested in semi-classical approaches in non-equilibrium quantum dynamics.

Book Nonequilibrium Phenomena in Strongly Correlated Systems

Download or read book Nonequilibrium Phenomena in Strongly Correlated Systems written by David Blasche Blaschke and published by . This book was released on 2020-09-28 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the fundamental aspects of the non-equilibrium statistical mechanics of many-particle systems. The concept of Zubarev's approach, which generalizes the notion of Gibbs' ensembles, and introduces a nonequilibrium statistical operator, providing an adequate basis for dealing with strongly correlated systems that are governed by nonperturbative phenomena, such as the formation of bound states, quantum condensates and the instability of the vacuum. Besides a general introduction to the formalism, this book contains contributions devoted to the applications of Zubarev's method to the solution of modern problems in different fields of physics: transport theory, hydrodynamics, high-energy physics, quark-gluon plasma and hadron production in heavy-ion collisions. The book provides valuable information for researchers and students in these fields, requiring powerful concepts to solve fundamental problems of non-equilibrium phenomena in strongly

Book Emergent Phenomena in Correlated Matter

Download or read book Emergent Phenomena in Correlated Matter written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2013 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonequilibrium Dynamics of Collective Excitations in Quantum Materials

Download or read book Nonequilibrium Dynamics of Collective Excitations in Quantum Materials written by Edoardo Baldini and published by Springer. This book was released on 2018-03-28 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.

Book Out of Equilibrium Physics of Correlated Electron Systems

Download or read book Out of Equilibrium Physics of Correlated Electron Systems written by Roberta Citro and published by Springer. This book was released on 2018-07-26 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.

Book Quantum Field Theory in Strongly Correlated Electronic Systems

Download or read book Quantum Field Theory in Strongly Correlated Electronic Systems written by Naoto Nagaosa and published by Springer Science & Business Media. This book was released on 1999-09-20 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author extends the concepts introduced in his Quantum Field Theory in Condensed Matter Physics to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analyzed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators, and quantum Hall liquids from the point of view of gauge theory.

Book Manipulating Quantum Systems

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2020-09-14
  • ISBN : 0309499542
  • Pages : 315 pages

Download or read book Manipulating Quantum Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-09-14 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Book Strongly Correlated Systems  Coherence And Entanglement

Download or read book Strongly Correlated Systems Coherence And Entanglement written by J M P Carmelo and published by World Scientific. This book was released on 2007-07-12 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a collection of review papers on recent work in the connected areas of strongly correlated systems, the effects of coherence on macroscopic systems, and entanglement in quantum systems. These areas have attracted considerable interest due to their complexity and associated unexpected nontrivial phenomena, and also due to their potential applications in various fields, from materials science to information technology. The coverage includes strongly correlated electronic systems such as low-dimensional complex materials, ordered and disordered spin systems, and aspects of the physics of manganites and graphene, both in equilibrium and far from equilibrium.

Book Quantum Gases

    Book Details:
  • Author : Nick Proukakis
  • Publisher : World Scientific
  • Release : 2013
  • ISBN : 1848168128
  • Pages : 579 pages

Download or read book Quantum Gases written by Nick Proukakis and published by World Scientific. This book was released on 2013 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.

Book Statistical Theory of Heat

    Book Details:
  • Author : Wilhelm Brenig
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642746853
  • Pages : 298 pages

Download or read book Statistical Theory of Heat written by Wilhelm Brenig and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on the statistical theory of nonequilibrium phenomena grew out of lecture notes for courses on advanced statistical mechanics that were held more or less regularly at the Physics Department of the Technical University in Munich. My aim in these lectures was to incorporate various developments of many-body theory made during the last 20-30 years, in particular the correlation function approach, not just as an "extra" alongside the more "classical" results; I tried to use this approach as a unifying concept for the presentation of older as well as more recent results. I think that after so many excellent review articles and advanced treatments, correlation functions and memory kernels are as much a matter of course in nonequilibrium statistical physics as partition functions are in equilibrium theory, and should be used as such in regular courses and textbooks. The relations between correlation functions and earlier vehicles for the formulation of nonequilibrium theory such as kinetic equations, master equations, Onsager's theory, etc. , are discussed in detail in this volume. Since today there is growing interest in nonlinear phenomena I have included several chapters on related problems. There is some nonlinear response theory, some results on phenomenological nonlinear equations and some microscopic applications of the nonlinear response formalism. The main focus, however, is on the linear regime.

Book Strongly Interacting Quantum Systems Out of Equilibrium

Download or read book Strongly Interacting Quantum Systems Out of Equilibrium written by Thierry Giamarchi and published by Oxford University Press. This book was released on 2016 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new experimental tools and theoretical concepts of collective nonequilibrium behavior of quantum systems. The book is based on the Les Houches Summer School of August 2012, "Strongly interacting quantum systems out of equilibrium".

Book Non equilibrium Dynamics of One Dimensional Bose Gases

Download or read book Non equilibrium Dynamics of One Dimensional Bose Gases written by Tim Langen and published by Springer. This book was released on 2015-05-22 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents a series of experiments with ultracold one-dimensional Bose gases, which establish said gases as an ideal model system for exploring a wide range of non-equilibrium phenomena. With the help of newly developed tools, like full distributions functions and phase correlation functions, the book reveals the emergence of thermal-like transient states, the light-cone-like emergence of thermal correlations and the observation of generalized thermodynamic ensembles. This points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution, and lays the groundwork for a universal framework of non-equilibrium physics. The thesis investigates a central question that is highly contested in quantum physics: how and to which extent does an isolated quantum many-body system relax? This question arises in many diverse areas of physics, and many of the open problems appear at vastly different energy, time and length scales, ranging from high-energy physics and cosmology to condensed matter and quantum information. A key challenge in attempting to answer this question is the scarcity of quantum many-body systems that are both well isolated from the environment and accessible for experimental study.

Book Lectures on Non equilibrium Theory of Condensed Matter

Download or read book Lectures on Non equilibrium Theory of Condensed Matter written by Ladislaus Alexander B nyai and published by World Scientific. This book was released on 2006 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses in depth many of the key problems in non-equilibrium physics. The origin of macroscopic irreversible behavior receives particular attention and is illustrated in the framework of solvable models. An updated discussion on the linear response focuses on the correct electrodynamic aspects, which are essential for example, in the proof of the Nyquist theorem. The material covers the scaling relationship between different levels of description (kinetic to hydrodynamic) as well as spontaneous symmetry breaking in real time in terms of nonlinear dynamics (attractors), illustrated using the example of Bose-Einstein condensation. The presentation also includes the latest developments ? quantum kinetics ? related to modern ultrafast spectroscopy, where transition from reversible to irreversible behavior occurs.

Book Dynamical Mean Field Theory for Strongly Correlated Materials

Download or read book Dynamical Mean Field Theory for Strongly Correlated Materials written by Volodymyr Turkowski and published by Springer Nature. This book was released on 2021-04-22 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.

Book Critical Dynamics

    Book Details:
  • Author : Uwe C. Täuber
  • Publisher : Cambridge University Press
  • Release : 2014-03-06
  • ISBN : 0521842239
  • Pages : 529 pages

Download or read book Critical Dynamics written by Uwe C. Täuber and published by Cambridge University Press. This book was released on 2014-03-06 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and unified introduction to describing and understanding complex interacting systems.

Book Manipulating Quantum Systems

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2020-10-14
  • ISBN : 0309499518
  • Pages : 315 pages

Download or read book Manipulating Quantum Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-10-14 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Book Quantum Information and Coherence

Download or read book Quantum Information and Coherence written by Erika Andersson and published by Springer. This book was released on 2014-07-08 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum control based on measurement, orbital angular momentum of light, entanglement theory, trapped ions and quantum metrology, and open quantum systems subject to decoherence. The contributing authors have been chosen not just on the basis of their scientific expertise, but also because of their ability to offer pedagogical and well-written contributions which will be of interest to students and established researchers.